NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

EUREKA: A DISTRIBUTED SHARED MEMORY SYSTEM
BASED ON THE LAZY DATA MERGING
CONSISTENCY MODEL
by
Joao Alberto Vianna Tavares

September 1995

Thesis Advisor: Amr Zaky

Approved for public release; distribution is unlimited.

s 0

REPORT DOCUMENTATION PAGE Ot N oot o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

i ey e

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1995 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Eureka: a Distributed Shared Memory System Based on the Lazy Data
Merging Consistency Model (U)

6. AUTHOR(S)
Tavares, Joao Alberto Vianna

| e ————————————————— = o~ e
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

BB T R T T Y i YT N T Ty =S = T T T o T ¥ o TSyt e e e Y
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

[11. SUPPLEMENTARY NOTES . .))) -
he views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

A A it ————— ——— T —— " —————
12a. DISTRIBUTION / AVAILABILITY STATEMENT o 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Distributed Shared Memory (DSM) provides an abstraction of shared memory on a network of workstations.
Problems with existing DSM systems are lack of portability due to compiler and/or operating system modification
requirements, and reduced performance due to significant synchronization and communication costs when
compared to their message passing counterparts (e.g., PVM and MPI).

Our approach was to introduce a new DSM consistency model, Lazy Data Merging (LDM), which extends
Data Merging (DM). LDM is optimized for software runtime implementations and differs from DM by “lazily”
placing data updates across the communication network only when they are required. It is our belief that LDM can
significantly reduce communication costs, particularly for applications that make extensive use of locks.

We have completed the design of “Eureka”, aprototype DSM system that provides a software implementation
of the LDM consistency model. To ensure portability and efficiency we use only standard Unix™ system calls and
a publicly available software thread package, Cthreads, from the University of Utah. Futhermore, we have
implemented and tested some of Eureka’s core components, specifically, the set of communication and hybrid
(Invalidate/Update) coherence primitives, which are essential for follow on work in building the complete DSM
system. The question of efficiency is still an open problem, because we did not compare Eureka with other DSM
implementations.

14. SUBJECT TERMS]] 15. NUMBER OF PAGES
Distributed shared memory, lazy data merging, survey on consistency models 137
and network programming. 6. PRICE CODE
17. SECURITY CLASSIFICATION] 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL ‘
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

EUREKA: A DISTRIBUTED SHARED MEMORY SYSTEM
BASED ON THE LAZY DATA MERGING
CONSISTENCY MODEL

Joao Alberto Vianna Tavares
Lieutenant, Brazilian Navy
B.S., Brazilian Naval Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

'

Author; LA (} ///K’/VLA\.V

Joao):édb rto Vianna Tavares

Approved by: A ALY zf_\f_&’ﬁ

Amr Zaky, Thesis Advisor

September 1995 /\
/

W—Tak Shing, Seéond Reader

et

Ted Lewis,uChairman,
Department of Computer Science

iii

ABSTRACT

Distributed Shared Memory (DSM) provides an abstraction of shared memory on a
network of workstations. Problems with existing DSM systems are lack of portability due
to compiler and/or operating system modification requirements, and reduced performance
due to significant synchronization and communication costs when compared to their
message passing counterparts (e.g., PVM and MPI).

Our approach was to introduce a new DSM consistency model, Lazy Data Merging
(LDM), which extends Data Merging (DM). LDM is optimized for software runtime
implementations and differs from DM by “lazily” placing data updates across the
communication network only when they are required. It is our belief that LDM can
significantly reduce communication costs, particularly for applications that make extensive
use of locks.

We have completed the design of “Eureka”, a prototype DSM system that provides a
software implementation of the LDM consistency model. To ensure portability and
efficiency we use only standard Unix™ system calls and a publicly available software
thread package, Cthreads, from the University of Utah. Futhermore, we have implemented
and tested some of Eureka’s core components, specifically, the set of communication and
hybrid (Invalidate/Update) coherence primitives, which are essential for follow on work in
building the complete DSM system. The question of efficiency is still an open problem,

because we did not compare Eureka with other DSM implementations.

vi

TABLE OF CONTENTS
I INTRODUCTIONcovtiiiiiiiieireieisieiniiiresessnssessesssesssessssssssesnsessssssssssosseesesssssssesns 1
A. BACKGROUND AND MOTIVATIONcccocoueiinerceeteeeeeeeeeeeeeseeneses e, 1
B MESSAGE PASSING VERSUS SHARED MEMORYcccooeeeeemeernnnn. 2
C. PROBLEM STATEMENTc.ocoimirrrereeeseineeeteeee e eeses s eesesees s sesses oo 4
D. CONTRIBUTIONociiiiriinininieeeeeeteetese e e e e sssae s sese s oseesesesas 5
E. THESIS OVERVIEWocooiiiiinininieneteesstesee et saesssss s v eaeeees 5

II. BACKGROUND
A. TAXONOMIES FOR CLASSIFYING DISTRIBUTED SHARED MEMORY

SYSTEMS

1. DSM Implementation LeVelccvoeueuerevererererieeneececeireeeeeeeeeeeeeeeeeeseeenan 8
a. Hardware Level DSMc.coooiiiiieieeiieecreceeee e 9
b. Software Level DSMoccouieriiieieeeeitieeee et 9
C. Hybrid implementationsccccceeeveeeveneereniuieeeeeseneeceenseseenens 10
d. Factors that affect the DSM implementation level 10

2. DSM PIOtOCOLS ..ouvvetieeeeieeeeeeeeeeeveeeeeeereeeeeeeeseseessse e seee e e e 11

1. Granularity of Sharingcccccoceeieeereiereeitieieeecee e 13
2. FalSe SNATINGcovrviminiieiiireeeree ettt et e eeeesaee e sses s eas 15
3. SyNChIOMIZAtIONcccceveiiieieieiiiiiieeeeeeee e e e 17
4. HEEIOZENEILY ..c.coveeerietriereteteeeieeeeeeeeetet et eeeeeeeteses e s s s e 17

5. CORETENCE ProtOCOL ...oooveeieeeeeeee et ee e e 18

vil

B. DSM MEMORY CONSISTENCY MODELSccccoeeeivrererieeereeercrenan, 19
1. Strict ConsiStency MOAElcocvvvveeeeereereeeeieeceieeieecee e e eaene 20

2. Sequential Consistency Modelccocoveveererrerernreeirerereeeeceeeeveienesean. 20

3. Processor CONSISLENCYcccererrieremrerreirrereenierereeresneseneescssesesessossoneosene 22

4. Causal Consistency MOdElc.ccooveieeeeeinieeeeeeeeeeeeeeeeeeeeeeseeressessenns 23

5. Weak Consistency Modelccccceierieeeeirereniciiteieeeeeeeereveaesenenee 24

6. Release Consistency MOdelcevveeeererereieeneirieeeirieisescaeese e 27

a. Eager Release ConSiSteNnCycoovveevvereerevnerenveveeeneennsrreneevsenenes 28

b. Lazy Release CONSIStENCYccoevveriererierrereeriirereereriiereneesennnes 29

7. Entry Consistency Modelccccoeeueeinieincenreeiecicieeeecrisreeeeeveeeeenenns 31

II. DSM SYSTEMS OVERVIEWcccoiirneenteterecee et et eresssssss e s s 35
A. HARDWARE IMPLEMENTATIONScoooooieiieieeeeccieeeeeeeseeeveneeee e 35
1. KSR-1 35

2. DASH ettt ettt e sasaaes 37

B. SOFTWARE IMPLEMENTATIONSoooiiiieeeteceeeeereeeeceeeeevcsee e enens 39
1 Operatiﬁg System Level - Cloudsoocveenrervinievenicieceeesereveereeeenns 39

2. Runtime LIDIari€scccoveoeivieereerereriieeeetere et etcscsi e escseesese s 40

A MIAWAY oottt 40

D, MUDIN it sttt et 43

c Treadmarksc.coueiivininieiiereene e e enene 46

C. COMPILER INSERTED PRIMITIVES - ORCAcccooeuvieeeeeeeeeeennn 47
D. HARDWARE/SOFTWARE COMBINATION - FLASHccooooeveeveann... 48

viii

IV. LAZY DATA MERGING CONSISTENCY MODELccooovovemmreerereeererereennn. 51
A. THE DATA MERGING DSM PROTOCOL - AN OVERVIEW 51

B. DATA MERGING PROTOCOL: DEFINITIONSc.ccoceovteemrerrreeeennn 52

1. Processing EIement (PE)oouveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeeeeee e 52

2. Global Memory Unit (GMU)ccooooiemeeeeeeeeeeeereeeeee oo 52

C. THE DATA MERGING PROTOCOLcocoooouierereeeeeeeeesereres s 53

L. Processing EIEMENtcccoeueueiieeniecvieieieceeeereeeeeeeeeeeeeseeeseseseseses e, 54

2. Global Memory Unit ACHONSovoveeuerevreeneeerersiereeeeseeeeeeneeesesessesesens 55

3. Actions Performed by the GMU in Response to the Processing Element

REQUESES ..ottt ettt eeee et e s e 56

a. Request Cache BIOCKcccovimmmmrerererieinierenceeeeeeeeeeees et eeeesaeans 56

b, FIush Data ...ttt 56

C. Report Replacementcoeueeeveumuivieiiereecceceeeeeeeeeeee s, 56

d. Bypass-Read Data Elementcccccovueieievveeveeeeeeeeeeeeeeeenn. 56

e Bypass-Write Data Elementccccooieeiviveiieireceeeeeeeeee . 57

f LOCK ettt et 57

g UNIOCK vttt ettt et e ee e e nene 57

h Test and Set LOCKocooveiiiicieieeceeee e 57

i GMU Internal ACHONSccvvvuereererererererereiinseieeeeeeseneeeeessss 57

D. LDMRATIONALEccooiiiimeece et eeee e eses s e 58
E. EXTENSIONS TO THE DATA MERGING PROTOCOLooveveoa... 60
F. THE LAZY DATA MERGING PROTOCOLcoeooveerereereereeeeeeeeeerena 60

ix

L. ProtoCol NOTAtIONcuviiuiiceiiieninteientnceteretsieseesesnassesessesessssesessessenes 61

2. Description of LDM aCtiONScccceeveeveeererevieeeererireeeeeresissereressesesnas 62

A Page Fault..iiie et 62

b. Bypass-Cache MESSAZESccceeereerreveerrerrenenrerecresessevesresseonnes 63

C. Synchronization OPErationscceeveeveereereenrevereeseseenensennes 65

d. Partial Ordering Definitionsccceeeveeeeveeeneeeereeenrenreesseene. 66

e. Read and Write LOCKSooovuveeiieeiecneireeveene eereerereresarrasens 68

f. Barmier Callcccociiiiiieieeeeeeerete ettt 73

G. PUTTING IT ALL TOGETHERccocoverieiririerenieeeeeeee e eeeseenesones 75
1 Distributed Data Base Problemc.cccoeeveeerecrevereereeeeeeseeeeevennene 75

. Data MErgingcocooeoioioiriiceeiecrieeeee ettt erre e 76

b. Lazy Data MErgingcccooeeeevreciecreieererreecreree e svesnoessas 17

2. Lazy Data Merging: Read and Write LOCKSccocceeuvrvevvreieeerieennen. 78

3. Data Merging and Lazy Data Merging Barrier Callo........... 80

V. EUREKA: A “LAZY DATA MERGING” IMPLEMENTATIONccccouue...... 85
A. DSM SYSTEM ORGANIZATIONcooovvioriereriireeieeeeeeereseeeeeeseeesesesenas 85
L ODBJEOLS oieeceeuiieecreteeeteteteeeet et es et ee et ss et s sse st seseeseeenees 85

2. LOCEI THICAAS w..vveuveeeunerermeriessnsessssseseesssses e ssssssssesseeseessssseseesessens 86

B. EUREKA RUNTIME ENVIRONMENTcooovieieteeeteteeeeteeeeeeeseeeeenens 87
1. Eureka EXeCution OVEIVIEWcocceeeveeveeeviviieeeeneneerieseseeseseeseeneerenns 88

2. Handlers INaliZationcocevevermeieeeeereceereee e ev e 91

a. Communication Port and Communication Handler 91

b. Memory Handlerc.ccccoivioiiieiireiieeceeeeeeceeer s 92

5
| 3. Eureka Shared Data and Synchronization Objects Allocation 92
' a. Static Memory AllOCAtioNccouiuiuriveciniuecncemcrneescrecseances 93
b. Dynamic Memory ALOCAtIONcccceereererveeeeiererceineceeveseenens 95
i C. Creation of Lock ODJECES ...vc.ceereviveererineeieereccecececee e 95
) d. Creation of Barrier Synchronization Objectscccvereunn.. 96
4. EXeCution Phaseccccocomimnnciriireeeceetceee oo sveseaeaees 97
a. Suspend QUEUEcococeimirirreeiierereereee et ereeee e seeesneanas 97
i b, Page DITeCOTYcccceveviiieiieiereteceereeeee et eeseeeseeeseaens 98
l c. Synchronization Directory and Page Tableccccovevvvmnneen. 98
d. Sending/Receiving MeSSAZESccevveeereerereririrereeeeiieeeeneanae 99
€. Operation Codescceeevivirrererenrererrereneereseteseeesessssecssnssenenes 101
5. Data Gathering Phaseccceeieeivrcriviecriectceeeeecveee e 104
6. Termination Phaseccccoccviimiennieciereereeeeeeeeeeee e 104
C. CODE EXAMPLES ...ttt sess st sesesessos e eaens 104
1. Creation of an UDP POItccoovieieiiritiieenececeeecececee e seene e 104
2. DSM System CallScccueieeiiriierieeieriereeceeeeeecete ettt eeesaeaesesaeaens 106
3. How to Present Debug Informationccocoeeevvvuecveveevenesenreeennnn. 108
VI CONCLUSIONoooiiinieinincnreinniententeesseseinesersesessessesessessessesessesssseneessssssssssssss 109
A. SUGGESTIONS FOR FUTURE WORKc..cocooviiiivieeereeeeeeeeseeann. 110
LIST OF REFERENCES ..ottt eeves e seeeesae e ssesss e sessssens 111
INITIAL DISTRIBUTION LIST ..ottt et et esessee st oo sese e s 115

xi

-

LIST OF FIGURES

L. DSM @DSITACHON. ..cuccviiriieiiieeeteecreieteiniesaeaeessnese e rees s sesssesesenesesesensesessssseesssssosssanas 3
2. Taxonomy for classifying DSM systems as proposed by Tanenbaum in [TN95]. 7
3. DSMimplementation IEVELS.ccvemeiieeieieiieeeiiiieceeeeeee ettt et sneseseesseseseseresesenns 8
4. The second criterion: the DSM alZOTIthm.ccoovueuiveeeereeereereeeeeiee e eeeeerees e senans 12
5. FalSe SATINE. «.oovomiiiiirinieieieteretneeeeteer et se e et et s eeeaes s s s se e sesessesesesess 16
6. An example of a sequentially CONSISLENt PTOZTAM.cvovuvvevreeeeeeereeerereesesesesessreseseseenas 21
7. Communications on the Sequential Consistency Model.ccoueueeeeeeeveeeereeeeeeeerennn 21
8. Example of a processor CONSIStent PrOZIAIM.v.vevereeeeeeeeereeeeeeeeeessreressessssessesssesenns 23
9. Causal ConsiStenCy MOAEL.c.ooveuiiiiiereriieieeieeeeeeee et e st ee e s eessesessesesessssesseseseaes 24
10. An example of DRFO [AHO0L.ccccoooururieriieiiteteeeeet s tteeeevesseseeeeeaesessesssssses s e essenns 25
11. Weak Consistency valid (a) and invalid (b) sequences of eVents.eoveveeevevererrnnns 26
12. Release ConsiStenCy MOAEL.cocereiereeeiereririnirieieieiececeeece e eee et eeeeeeeses s s s s s e seesesessenes 28
13. Eager Release Consistency mModel.cooovouiuieieieeiniicieietiieeee oo eve e sees e 29
14. LRC Invalidate protocol (a) and LRC update protocol (b).eoeeeeeverererererererererererenns 31
15. Comparison between RC and LRC mOdelS.c..oovueueeemeueeeereeeeeeeere oo 32
16. The KSR-1 ALLCACHE HI€IarChy.oeueveveeeeieeeeeeeeeeeeseeeeeecee e oo esererese s 36
17. DASH High Level SITUCIUIE.c.cevumurrurrenieiiierereeeeeeeieee oo ee e e e e s s s s sanes 38
18. DASH Processing NOGE.ccooveeeirinrerirerieieieieeeeeeeeeeeeee e seesesesesesessseseses s ss s se s 38
19. Distributed queue 10CKING SCREIME.ccevivivereieieiiicteeeeeeeeeeeesee e sesssseseseseses e 42
20. Munin Runtime System [CBZO2].ooueeeeeeeereeeeeeeeeeee oo 44
21. Write-Shared Protocol: twin creation when a page is accessed for writes (a) and sending out
diffs (b) when a release Operation OCCULS.c.eeeereveeeeirieieieeeeeesee e sese e sens 46
xiii

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Data Merging COMPONENLS.ccccucerurirmrintereieeesieeet et ese e esesese e s ssssssessessssseesens 53
Processing Element Finite State Machine.c.oovevivieiierieieeeeeeeeeeeeere e e s esesenenan 54
Global Memory Unit Finite Stéte Machine.cccovmviviriinneneeeeeeece e 55
Lazy Data Merging Runtime Environment.c.oeuveeveuevereeeeeeeeenenereseseseeseessssseon. 59
Notation for description of LDM. et cerveveeneas R oot saetens 61
Performing a Data BIOCK TEQUESL.c.eeuerereririreienieetieceiecececeeece e eeeeseses e ses s 63
Bypass-Read MESSAZES.oueeueuiremrineriniereteteeeteeeeee e eeeee e e eesaeteeesseseeses s e saens 64
Bypass-WIIte MESSAZE.ccererereurrririrrrrnieseieierseseaesesesesseeeeseseeesessessssssssssssess s sesesesns 65
DiffS CTEAtION PIOCESS. ...cucuunrrrrrerrtnerinineeersnseressesssisesssesesesssesssesssssssesessesesessesassesesseses 66
Vector Clock implEmMENtatioN.c.cceeueurueeueueuereneersieisseecsssie oo eeeessssessesesesessssseseses 68
Synchronization event: acquiring @ Writ€-LoCK.ocveeeeereueerereenerererereesesesensnesnn, 70
Synchronization event: acquiring @ Read-LoCK.cccovveveeeeeeeeeeeeeeeeeeeeeeeereree e 71
Synchronization event: performing a 10CK T€IEASE.c.eouerereeeeereererereerreeereesesss e, 72
Synchronization event: barrier call. veereeaeene et ebe e es rrereereene 74
Data distribution across the bIOCKS.cceveeeviriereieieeeteteeieiiees et eesssese e e s 76
Data METZING.oooviiiiiiiicecceriette ettt ettt et eteseeeses et eses s 77
Lazy Data METZING.c.ccooeuimeeenineiieneeeeeieiite ettt e se e e eeeessesessseses s eessenens 79
Lazy Data Merging: read and WIite 10CKS.ceereeieeeviieniecieeeeeeeeeeeeeseeessseesesessesenens .81
Comparison of DM and LDM during a barrier call.co.evevvvemeeeeeeerereeererererennnn, .82
Lazy Data Merging: barrier Call.coeeuiiveiiieeeeeereeeeeeeeee e sevee oo vevereesnenns 83
Eureka Runtime Environment.c.ccoevevevevvevivicvenenceerenenen. ettt bt e resa e anetatans 87
Eureka System INitialiZAtion.ccceceeierreeeieriiereecee et 89
Message header format.cccccecevieienecrcricnennn, et st e aas e .. 100

Xiv

45.

Diff message.

9909000000000 00000000 00000000000ttt nbenccrne R L L LR T Y TR TR PR T PP POPRY 101

XV

Xvi

LIST OF TABLES

1. Block Granularity on DSM SYSLEIMScevererieriiereiereeeeeeeteereeeereereneseeresessesessessssessessssssens

2. Distinction Between RT and VM implementations

3. Page Protection Actions

..

..

Xvii

Xviii

ACKNOWLEDGEMENTS

First and foremost, I must acknowledge the unfailing and unconditional support I have
received through it all from my wife, Tereza, without which this work could never have
been completed. Her positive attitude and understanding while dealing with the everyday
burdens of child rearing were remarkable as they were essential to my success. I am also
indebted to my parents, Dr. Bernardino and Maria Izabel Tavares and to my grandmother
Helena Vianna for instilling in me the value of education and the desire to pursue my goals.

I also wish to express my deepest gratitude to Professor Amr Zaky whose support and
guidance have been a constant inspiration to me. A special thanks goes to Professor Mantak
Shing for his insights on the reviewing of my thesis and to Doctor Ted Lewis for his support
and interest.

| Although not members of this institution, Doctor John Carter from the University of
Utah and Doctor Alan Karp from HP Labs were most helpful and served as a source of
inspiration for my research.

It would be mostly unfair if we didn’t mention the staff members of this Department,
their silent work was invaluable for this achievement. My special thanks to Al Wong whose

help at the initial stages of this thesis were of the most importance.

Xix

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Parallel processing is the upcoming alternative for expanding processing power. The
trend towards this technology is derived from the availability of high performance
communication networks and the perception that improvements in computer performance
from hardware innovations are limited as we approach various physical limits.

There are two widely accepted models for parallel programming: shared memory and
message passing. The shared memory model is a direct extension of the conventional
uniprocessor programming model. In this model, processors interact by modifying data
objects stored in the shared address space. Multiple Instruction stream Multiple Data
stream (MIMD) shared-address-space computers, often referred to as multiprocessors, are
examples of parallel architectures that employ such memory model. A major drawback of
such architectures is that the bandwidth of the interconnection network must be substantial
to ensure a scalable performance. To reduce the problem, a fast local memory (cache) is
incorporated. This local memory concept can further be extended to eliminate physically
shared memory entirely as in Cache Only Memory Architectures (COMA) [ML95].

According to the memory access time to global and local data, multiprocessor
architectures can be classified as Uniform Memory Access (UMA), when the time taken by
a processor to access any memory word in the system is identical, or Nonuniform Memory
Access (NUMA), whenever the time to access a remote memory bank is longer than the
time to access a local one.

Distinct from the previous programming model, the “message passing model” does
not support the single shared memory abstraction. Instead, each processor has its own
private memory which is invisible to other processors. These types of architectures can be
referred as No Remote Memory Access (NORMA) architectures [TN95]. In this model,
processors can communicate only through explicit “message passing” , dispensing the need

for enforcing cache coherence as is the case for shared memory systems.

The message passing paradigm is widely used on MIMD distributed memory
multiprocessors. This type of architecture allows combining inexpensive, off-the-shelf
processors connected through an interconnection network or through a hierarchical bus or
ring architecture, resulting in a very scalable design, delivering high performance

computing. The next section addresses the issues involved on both programming models.

B. MESSAGE PASSING VERSUS SHARED MEMORY

There are advantages and disadvantages to message-passing as well as to shared
memory. “Message-passing” gives programmers and compilers explicit control over the
choice of data communicated and over the time of transmission as opposed to the shared
memory paradigm. With appropriate interfaces and protocols, it is relatively easy to
overlap computation with communication. The explicit nature of message-passing is
perceived also as its main weakness [CBZ91]; programmers and compilers need to plan and
to program explicitly every communication action. Such planning is especially difficult for
applications that use data dependent communication actions. When exact access patterns
are not known, performance is affected by the volume of data communicated, the number
of messages sent, and the amount of time that processes must wait for messages to be
delivered.

In contrast, Shared Memory can be viewed as a simpler and more intuitive abstraction
[ACDBY4]. A Distributed Shared Memory (DSM) system can be defined as an abstraction
of a single shared address space, implemented on a distributed memory multiprocessor.
DSM allows processes to assume a globally shared virtual memory even though they
execute in nodes that do not physically share memory. The DSM software provides the
abstraction of a globally shared memory, in which each processor can access any data item,
without the programmer having to worry about where the data is, or how to move this value
to the appropriate processor. On a DSM system the programmer can concentrate on
algorithmic development rather than on managing partitioned data sets and communicating

values. In addition to ease of programming, DSM provides the same programming

environment as that on hardware implementations of shared-memory multiprocessors,
simplifying the portability between the two environments. A common application for the
DSM concept allows for seamless integration of shared memory workstations in a network
environment. Figure 1 illustrates a DSM system consisting of N networked workstations,

each with its own memory, connected by a network.

Network

Shared Memory abstraction

Figure 1: DSM abstraction

In summary, we can state that the advantages of the DSM model over message passing

are:

* Shared memory programs are usually shorter and easier to understand than their
message passing counterparts.

+ Large or complex data structures may easily be communicated.
+ Shared memory gives transparent process-to-process communication.
+ Programming with shared memory is a well-understood problem.

C. PROBLEM STATEMENT

DSM systems combine features of shared memory and distributed memory
multiprocessors. They support the relatively simple and portable programming model of
shared memory on physically distributed memory hardware, which is more scalable and
less expensive to build than the shared memory hardware. Although a large number of
DSM systems (Munin [CBZ92], Midway [BZS93] and [ZSB94], etc.) have been proposed
and implemented they are still not widely in use. Some evident reasons are lack of
portability, low performance when compared with their message passing counterparts, and
the need for extensive modifications of existing programs.

The challenge in building a DSM system is to achieve good performance over a wide
range of parallel programs without requiring extensive program restructuring by the
programmer [CBZ92]. The overhead of maintaining consistency in software and the high
latency of sending messages make this rather difficult. The primary source of DSM
overhead is the large amount of communication that is required to maintain consistency and
the operating system cost to prepare a message associated with the network latency. The
conjunction of these two factors penalizes the overall system performance.

Data Merging [KS93] provides means for implementing a DSM system with
communication costs comparable to the previous proposals, but requiring only small
hardware changes. The goal of this research is to extend such protocol to a portable
software implementation and verify its feasibility. Since for software implementations, the
communication costs are much higher than on a shared memory multiprocessor, we impose

some restrictions on the Data Merging protocol as originally proposed.

D. CONTRIBUTION

The major contribution of this thesis is to extend the Data Merging as a viable
consistency protocol for implementing DSM. In order to achieve performance results
comparable to previous DSM implementations and to provide a easily portable solution
without requiring changes to the application programs, we introduced some modifications

to the original protocol as proposed by Karp and Sarkar in [KS93].

E. THESIS OVERVIEW

The remainder of this thesis is organized as follows. Chapter II gives a comprehensive
overview of DSM, starting by describing a taxonomy for classification of DSM systems,
followed by a broad discussion on the issues involving such systems and the existing
memory consistency model proposals. In Chapter III we briefly describe representative
DSM implementations of each category. In Chapter IV we analyze the Data Merging and
Lazy Data Merging protocols pointing out their mean features. Chapter V outlines the
design decisions and the modifications introduced for a portable software implementation
and we relate the implementation details applied to the Eureka DSM system. In Chapter

VI we conclude our work and provide directions for further research.

II. BACKGROUND

This chapter gives a comprehensive overview of Distributed Shared Memory
(DSM) systems principles. We start by describing two taxonomies for classifying DSM
systems. Further on, we enumerate the major issues that are involved in DSM system

implementations and give a description of existing memory consistency models.

A. TAXONOMIES FOR CLASSIFYING DISTRIBUTED SHARED MEMORY
SYSTEMS
Shared memory systems cover a broad spectrum, from systems that maintain
consistency entirely in hardware, to those that do it entirely in software. To present such
wide spectrum we need some sort of criteria for their classification. We introduce two
taxonomies for classifying such systems. The first was informally introduced by

Tanembaum [TN95]. Figure 2 describes this taxonomy as originally proposed.

Hardware-controlled caching Software-controlled caching
v Managed by MMU v e’ Managed by Managed by language e’
O.é runtime System

>

Munin .
Treadmarks | Linda
Midway Orca

Eureka

S t Dash
Ffr%%le)? Alewife

Transfer| Cache Cache Page Page Data Object
Unit Block Block . Structure

Figure 2: Taxonomy for classifying DSM systems as proposed by Tanenbaum in
[TN95].

The other taxonomy was proposed by Milutinovic [ML95] and has the merit of
being one of the pioneer attempts for establishing a formal criteria for classifying DSM
systems. The proposed taxonomy adopts two variables for categorizing DSM systems:
DSM implementation level (Hardware, Software or Hybrid) and the DSM algorithm
(SRSW, MRSW, MRMW). The following paragraphs will briefly introduce this taxonomy

and some of the issues involved in its application.

1. DSM Implementation Level

There are three basic types for classifying systems under this criterion: Hardware,
Software and Hybrid DSM systems. Figure 3 summarizes the three implementation levels
in which current DSM systems fall.

The implementation level affects both the programming model as well as thg
overall system performance. While hardware solutions bring transparency and small access
latencies, software solutions can better exploit the application behavior and present more

flexibility, especially as a source for experiments of new concepts and algorithms.

a. Hardware.

b. Software.
(1) Operating System.

o Inside the kernel.
¢ Outside the kernel.

(2) Runtime Library Routines.

(3) Compiler Inserted Primitives.

¢. Hardware/software combination.

Figure 3: DSM implementation levels.!

1. As described in [ML95].

a. Hardware Level DSM

Most of the hardware DSM systems concentrate in one of three categories:

» Cache Coherent Non-Uniform Memory Architecture (CC-NUMA).

* Cache-Only Memory Architecture (COMA).

* Reflective Memory System Architecture (RMS).

On CC-NUMA architectures the shared virtual address space is statically
distributed across the clusters. It is accessible by the local processors and by processors
from other clusters with distinct access latencies. In general, the DSM mechanism relies on
directories with organizations varying from a full-map storage (DASH) to dynamic
structures (i.e., linked lists, fat trees, etc.).

COMA architectures provide the dynamic partitioning of data in the form of
distributed memories organized as large second level caches. Distinct from the previous
architectures, there is no physical home location for any particular data item. These
architectures allow a particular data item to be simultaneously replicated on many caches.
The typical architecture consists of hierarchical network topology (i.e., KSR-1).

RMS architectures adopt a hardware-implemented update mechanism. This
is achieved by declaring some parts of the local memory on each cluster as shared and
mapped into a common virtual address space. Coherence maintenance is enforced by full
replication. This is achieved by broadcasting/multicasting every write operation to the
other units. The result is a high cost for write operations. Typical examples of these

architectures are Scrannet and Encore’s RMS.

b. Software Level DSM

As described in Figure 3 software level implementations can be divided
into three basic categories: compiler implementations, user-level runtime packages and
operating system level implementations. The latter can further be subdivided into inside/

outside the kernel.

Operating system (inside the kernel) implementations are incorporated to
the actual operating system kernel. The advantage of this approach is that the semantics of
the underlying operating system can be preserved. An example of such system is Mirage
[MLO5].

Operating system (outside the kernel) implementations are those on which
the same mechanism can be accessed by both the user and the kernel. An example of this
systems can be found in Clouds.

User level runtime packages consists of libraries that are linked to the actual
application programs. Examples of such systems are Munin, Treadmarks, Quarks,
Midway, etc.

For compiler implementations the shared memory paradigm is applied at the
language level. For these applications, shared data is structured into logical units of sharing
and accesses to these shared elements are automatically converted into synchronization and

coherence primitives.

c. Hybrid implementations

Hardware DSM implementations have the disadvantage of limited
ﬂexibih'ty, especially for enforcing multiple coherence protocols. They also present some
limitations on scalability due to the requirements for maintaining directories, for example.
On the other hand, software implementations have lack on performance due to the larger
granularity and the latency for exchanging messages.

Hybrid implementations try to combine both levels to resolve some of these
problems. Typical examples for these architectures are the MIT Alewife in which the full-
map directory is implemented part in hardware and part in software and the Stanford

FLASH, which provides the means for implementing multiple coherence protocols.

d. Factors that affect the DSM implementation level

For better understanding we divide this item in two topics:

+ System architectural configuration; and

10

» Shared data organization.

System architectural configuration affects the system performance, since it
can offer or restrict a good potential for parallel processing of requests related to the DSM
management. It also strongly affects the scalability. Since a system applying a DSM
mechanism is usually organized as a set of clusters connected by an interconnection
network, architectural parameters include:

* Cluster configuration (single/multiple processors, with/without, shared/
private, single/multiple level caches, etc.);

« Interconnection network (bus hierarchy, ring, mesh, hypercube, specific
LAN, etc.). Almost all types of interconnection networks found in
multiprocessors and distributed systems have also been used in DSM
implementations. The software-oriented systems are, in general, built on
top of Ethernet (Munin, Treadmarks, Eureka) or ATM (Midway), while
topologies such as bus hierarchies (DASH, FLASH, Alewife), meshes or
rings (Memnet) are typical for hardware or hybrid solutions.

Shared Data organization represents the global layout of shared address
space, as well as the size and organization of data items in it, and can be distinguished as:

* Structure of shared data (e.g., non structured or structured into objects,
languages types, etc.);

* Granularity of coherence unit (e.g., word, cache, block, page, complex
data structure, etc.).

Hardware solutions generally deal with non-structured data objects
(typically cache blocks), while many software implementations tend to use data items that
represent logical entities in order to take advantage of the locality naturally expressed by
the application. On the other hand, some software solutions, based on virtual memory
mechanisms, organize data in larger physical blocks (pages), counting on the coarse-grain

sharing.

11

2. DSM Protocols

This classification deals with the possible existence of multiple copies of a data
item. It also considers access rights to these copies. The complexity of maintaining
coherence among different copies of a data item varies strongly with the algorithm. Many
policies have been proposed, the majority of them adopting “multiple readers single

writer” (MRSW) algorithms. Figure 4 depicts this classification criteria.

a. SRSW (Single Reader/ Single Writer)
¢ Without Migration.
o With Migration.

b. MRSW (Multiple Readers / Single Writer).
c¢. MRMW (Muitiple Readers / Multiple Writers).

Figure 4: The second criterion: the DSM algorithm.?

Basically, there are three parameters closely related to the algorithm:

» Responsibility for the DSM management (e.g., centralized, distributed/fixed,
distributed/dynamic).

» Consistency Model (e.g., strict, sequential, causal, weak, release, etc.).

+ Coherence policy (e.g., write-invalidate, write-update, type-specific, etc.).

The responsibility for the DSM management can be either centralized or
distributed. Centralized management is easier to implement, but suffers from the lack of
fault tolerance and can become a performance bottleneck. On the other hand, distributed
management policy can be defined either statically (fixed) or dynamically, eliminating
bottlenecks and providing scalability. In the case of a static management each manager is

assigned a predetermined subset of the data space, which remains fixed throughout the

2. The classification of Figure 4 is equivalent to the PRAM classification as defined in [KGGK94].
The equivalences are SRSW and EREW, MRSW and CREW and MRMW and CRCW.

12

lifetime of an application. In contrast, the dynamic approach3 management responsibility
shifts from a node to another at runtime.

The consistency model defines and enforces acceptable ordering of accesses to
shared data by different processes such that at pre-specified points of time the state of
shared data (as viewed by each individual process) is “correct’ in some process-defined
sense. Also, in [AH90] a consistency model is described as a contract between the software
and the hardware in which, by this contract, the software agrees to some formally specified
constraints, and the hardware agrees to appear consistent to at least the software that obeys
those constraints [TN95]. |

Stricter forms of memory consistency typically increase the memory access latency
and the bandwidth requirements. More relaxed models result in better performance at the
expense of a higher involvement of the programmer in synchronizing accesses to shared
data [ML95].

The memory coherence protocol determines when and how all the existing copies
of the data items existing at one site will be updated or invalidated on the other sites. -

It is important now to observe the difference among memory coherence and
memory consistency. Memory coherence examines in isolation each memory location and
the sequence of operations on it, without regard to other locations. Memory consistency

deals with writes to different locations and their ordering [TN95].

B. ISSUES ON DISTRIBUTED SHARED MEMORY SYSTEMS

1. Granularity of Sharing
The issue of granularity of sharing can be better addressed by answering the

question: “How large should the shared data block be?”. Determining the right granularity

largely depends on the problem domain and there is no general solution. Each extreme has

3. Also known as adaptive partitioning.

13

its advantages. The following table gives examples of some granularity choices for existing
systems.

It can be observed that hardware or hybrid DSM systems adopt a much smaller
granularity. Operating system implementations are, in most of the cases, restricted to use
the virtual block size (or multiples thereof) as its unit of reference, while software runtime
library DSM systems have the choice of using compiler support (e.g., Midway) or to
explicitly declare shared variables (e.g., Munin, Treadmarks, Quarks, etc.) to avoid the
burden of being forced to explicitly use pages as the unit of coherence. In the following

paragraphs we will analyze some of the issues that involve different block sizes.

Table 1: Block Granularity on DSM Systems

Ivy Munin DASH 16 bytes
I Mid KSR-1 12
Clouds Page size 1way Shared Data S 8 bytes
Mach Tread- Object Memnet 32 bytes
marks
Mirage CarlOS FLASH 128 bytes

For systems which use fixed block sizes (page-based systems and hardware
implementations) one would like to keep the communication cost as low as possible. There
are two ways to achieve this goal: using a faster transmission medium or reducing the block

size as the equation below suggests.

(latency per byte = fixed message startup cost + block size)

Transmission Media Bandwidth

Clearly, there are advantages and disadvantages in choosing a coarser block size for

a DSM system. The biggest advantage of coarse granularity is to reduce the start-up penalty

14

by amortizing it on a larger number of data bytes. This property is especially important
because many programs exhibit “locality of reference” [TN95], resulting on a implicit
prefetching of data that could be accessed in the near future.

Finer granularity, on the other hand, would be preferred in programs that present a
high degree of sharing. For this type of application larger block sizes will only diminish the
opportunity of concurrent access to different parts of a shared data block.

In summary, larger blocks are ideal for applications which exhibit low degree of
sharing and good locality of reference when compared to the computational granularity,
since it minimizes the fixed cost per word transferred. Meanwhile, if the degree of sharing
is relatively high when compared to the computational granularity then a smaller block size
becomes more attractive. The next section addresses this issue when a high degree of

sharing is present.

2. False Sharing

False sharing arises because a DSM system cannot identify updates to individual
bytes when protecting regions of memory, while the memory hardware provides control
only at the granularity of a data block. Therefore, false sharing occurs when two or more
procésses update distinct portions of the same data block.

False sharing poses a problem for systems that maintain consistency at the
granularity of entire pages or entire objects: every time a thread modifies a page of a shared
object, these systems must invalidate or update all copies. It is a particularly serious
problem for two reasons:

+ The consistency units are large, so false sharing is very common; and

» the latencies associated with detecting modifications and communicating are
relatively big, resulting in unnecessary faults and messages that are particularly
expensive.

There are two extremes of applications addressing false sharing.

* The problem is ignored (i.e., IVY [KL88]): the consequences are that pages will

15

“ping-pong” back and forward between processors as can be seen from Figure 5.

» We allow multiple writers to the same data block and rely on the programmer
to ensure that no two processors are writing to the same memory location. This
approach is known as Multiple Writers and is used by many existing
implementations (Munin, Treadmarks, and CarlOS).

Processor P1 Processor P2
Loop Loop
X =5 Y=4;
end loop; end loop;
X Y Data Block

Y=4

Figure (a) - Invalidate Sequence Figure (b) - Update Sequence
Before performing a write the Every write to a shared data
process invalidates the remote block will result on an update
copies. The consequence is that message to all other processors.
data blocks will ping-pong
between P1 and P2.

Figure 5: False Sharing.

The problem of false sharing is more extensively addressed in [BS93] in which an
attempt for quantifying the problem is given. It is interesting to mention that the cost of
False Sharing is small for programs that present a small degree of sharing while the cost
becomes prohibitive whenever a high degree of sharing is present. At first glance the naive

solution would be to reduce the coherence unit size. This would reduce or even eliminate

16

the problem. However, for applications in which the data is migratory by nature if this
reduction is too large, exactly the opposite happens; the cost gets larger with a smaller
block size due to the increase on the number of operations required [BS93].

In summary, the right size for the coherence unit to avoid false sharing without
imposing an increase on the number of operations is highly dependent on the degree of

sharing of the application type.

3. Synchronization

Most parallel applications running on a Shared Memory Multiprocessor rely on a
set of synchronization operations to enforce mutual exclusion and avoid race conditions.
For a multiprocessor environment Test-and-Set operations have a reduced cost and are
widely used to implement atomic transactions. On the other hand, for a software DSM
system this approach is unacceptable [MU94} due to limitations on network bandwidth.

Generally, DSM systems rely on explicit synchronization mechanisms to enforce
consistency on shared data. One alternative implementation is to provide Synchronization
Manager(s) which will handle the allocation/dealocation of synchronization objects and the
corresponding operations (e.g., Acquire/Release of locks). This approach reduces network
traffic at the expense of centralized control per synchronization object and is commonly
named as “centralized locking”.

Shared-variable systems like Munin and Midway rely on “distributed locking”
schemes. More precisely, Munin provides a directory for synchronization variables in
which each lock is mapped. On a lock request if the lock is Local (owned by the local
processor) it is released to the local thread, otherwise its owner is located through

consulting a Synchronization Directory.

4. Heterogeneity

This is an issue that presents no easy solution. Sharing data between two machines
with different architectures, and assuming that these two machines may not even use the

same representation for basic data types would seen very difficult [BL91].

17

Some solutions were presented for this problem. In Mermaid [ZH91], memory is
shared in pages and each page can contain only one type of data. Whenever a page is moved
between two architecturally different systems, a conversion routine converts the data in the
page to the appropriate format. An alternative proposal is mentioned in [BL91]. It consists
of organizing the shared data as variables or shared objects in the source language and
relying on a DSM compiler to add conversion routines to all accesses to shared memory.
An example of this approach is found in the implementation of Agora. In this system
memory is structured as objects shared among heterogeneous machines.

Albeit the solution of the heterogeneity problem allows the addition of more nodes
to DSM systems, it presents a drawback of requiring data conversions on every transaction

among heterogeneous platforms. In general, this overhead out-performs the benefits

[NLO1].

5. Coherence Protocol

The choice of the coherence protocol is related to the granularity of shared data. For
very fine grain data items, the cost of an update message is approximately the same as the
cost of an invalidation message. Therefore, the update protocol is typical for systems with
word-based coherence maintenance and invalidation is used in coarse grain systems. The
efficiency of an invalidation approach is increased when the sequences of reads and writes
to the same data item by various processors are not highly interleaved [ML95].

In spite of some drawbacks, update protocols are promising in one respect: the
number of messages involved. It directly reflects the message passing nature of the
underlying system. Updates can be thought of as sending a message containing the state
that the application wishes to share among the different parts of the program. Hence, we
can expect that when used carefully, the update protocol to perform as well as any message
passing implementation of an application [AAL92]. The drawback of this approach is that

updates may be sent to nodes that are not on demand to the updated value. To avoid this

18

problem and, consequently, reduce the number of update messages, two new consistency
models were proposed: Lazy Release Consistency and Entry Consistency.

In contrast, the invalidate protocol involves two extra messages to achieve the same
effect: the invalidate message to a node caching a given page and the get message for the
same page on a subsequent access by the node.

There are also some proposals for a hybrid solution as can be seen in [DKCZ93] in
which a hybrid coherence protocol is proposed for Lazy Release Consistency.

A fourth alternative is proposed for the Clouds operating system [MU94]. This
approach uses direct association of locks to govern the access to shared cache blocks,
allowing data associated with the lock to be sent to the requester along with the lock

granting. Upon a release of a lock, the associated data is sent back (if modified) to global

memory.

C. DSM MEMORY CONSISTENCY MODELS

In this section we introduce the more well known consistency models and
enumerate some of their strengths and weaknesses. It is important to observe that the
models are listed in increasing order of flexibility.

Before we proceed, we need to define what it means to perform a memory request
and a memory load. The following formal definitions are extracted from [GLLG90]. In both
definitions P, refers to processor i:

Definition 1: Performing a Memory Request

A LOAD by P; is considered performed with respect to P, at a point in time when
the issuing of a STORE to the same address by P, cannot affect the value returned by the
LOAD. A STORE by P, is considered performed with respect to P, at a point in time when
an issued LOAD to the same address by P, returns the value defined by this STORE (or a
subsequent STORE to the same location). An ACCESS (LOAD/STORE) by P, is performed
when it is performed with respect to all processors.

Definition 2: Performing a LOAD Globally.

19

A LOAD is globally performed if it is performed and if the STORE that is the source
of the returned value has been performed.

Definition 3: Performing a STORE Globally.

A STORE is globally performed if it is performed and if all immediate subsequent
LOADS from the corresponding memory location return the value issued by the STORE.

After the three above definitions we are ready to describe some of the existing

memory consistency models.

1. Strict Consistency Model

This is the most stringent consistency model. It is defined by the following
condition:

“Any read to a memory location x returns the value stored by the most
recent write operation to x.” [TN95]

In other words, when memory is strictly consistent, all writes are instantaneously
visible to all processes and an absolute global time order is maintained. If a memory
location is changed, all subsequent reads from that location will see the new value, no
matter how soon after the change the reads are done and no matter which processes are
doing the reading and where they are located. This type of memory consistency is easily
achieved on a uniprocessor system, but it is almost impossible to guarantee on a

multiprocessor environment, without explicity synchronizing on all STORE operations.

2. Sequential Consistency Model

The sequential consistency is defined by Lamport [LAM79] as follows:

“....A system is sequentially consistent if the result of any execution is the
same as if the operations of all the processors were executed in some sequential order, and
the operations of individual processor appear in this sequence in the order specified by its
program...”

The following are the sufficient conditions for providing sequential consistency:

* Before a LOAD is allowed to perform with respect to any other processor, all

20

previous LOAD accesses must be globally performed and all previous STORE
accesses must be performed; and

* Before a STORE is allowed to perform with respect to any other processor, all
previous LOAD accesses must be globally performed and all previous STORE
accesses must be performed.

Figure 6 exemplifies a program that runs concurrently on two distinct processors.

Processor 1 Processor 2
l.x=1; 2.y=1;
3.if (y==0) 4.1if (x ==0)
5. kill P2; 6. killP1;

Valid outcomes under a sequentially consistent program would be:

Processor P1 or Processor P2 being killed, none of them being killed,
but never both processors.

Figure 6: An example of a sequentially consistent program.

In summary, Sequential Consistency requires that the distributed memories in a
DSM have the same consistency properties as a time shared uniprocessor, which requires
that the global state of memory be consistent after every read or write to shared memory.

This requirement imposes severe restrictions on possible performance optimizations.

Pl Acq Wy

Wy Release
Lock lock
granted

Figure 7: Communications on the Sequential Consistency Model. 4

4. Dotted lines represent the intervals in which the processor should stall.

21

The reason why sequential consistency is inhenritly inefficient can be observed in
Figure 7. Every write operation forces the system to stall until the corresponding data block
is either invalidated or the updates are propagated to the other processors. More formally,
every STORE operation stalls the processor until it is performed.

Therefore, when both processors P1 and P2, in Figure 7, have cached the same
copies of the variables X and Y within a critical section, each write must be delayed until
the previous write completes even within a critical section. This will, besides requiring a
large number of messages, have a large delay due to the periods processor P1 must stall
(represented by dotted lines on Figure 7) while communicating. The use of sequential

consistency still requires synchronization when preemptive scheduling is used.

3. Processor Consistency

The concept of Processor Consistency was introduced by Goodman [GVW89]. It
requires that writes issued from a processor may not be observed by other processors in any
order other than the one in which they were issued. Specifically, this model relies on the
use of explicit synchronization to guarantee strict event ordering. The following conditions
are necessary for processor consistency:

* Before a LOAD is allowed to perform with respect to any other processor, all
previous LOAD accesses must be performed; and

* Before a STORE is allowed to perform with respect to any other processor, all
previous accesses (LOADS and STORES) must be performed.

The above conditions allow reads following a write to bypass the write. To avoid
deadlock, the implementation should guarantee that a write that appears previously in
program order will eventually perform [GLLG90]. Here we need to demonstrate the subtle
difference between Processor Consistency and Sequential Consistency. We will use the
example of Figure 8 to illustrate that.

According to Ahmad [AHJ90] for a sequentially consistent program outcome to be
legal it must obey two constraints:

* Program order must be maintained; and

22

* Memory coherence must be respected.

Processor 1 Processor 2
I.x=1; 2y=1;
3.if (y==0) 4. if (x == 0)
5. kil P2; 6. kil P1;

A valid sequence for a processor consistent program would result on both processors
P1 and P2 being killed. This outcome is possible since processor consistency allows
reads to bypass writes. So y == 0 on P1 and x == 0 are true statements.

Figure 8: Example of a processor consistent program.

Processor Consistency, in contrast, is more relaxed since it only requires that writes
issued from a processor may not be observed in any order other than that in which they were
issued. As can be observed, Processor Consistency may not issue the correct result if the
programmer is expecting sequential consistency, thus requiring the use of explicit

synchronization by the programmer to enforce sequential consistency.

4. Causal Consistency Model

Causal Consistency can be defined as:

“An execution on‘causal memory is correct if the value returned by each read
operation in the execution belongs to a set of correct values for that location.”

More precisely, writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in a different order on different
machines [TN95]. For causally related events we mean that an event A is caused by or
influenced by event B according to the definition of event ordering from Lamport
[LAMT79]. Concurrent events are those events that are not causally related. Figure 9
describes a sequence of events that are Causally consistent but violate sequential

~ consistency. In this figure the symbol W (x) a represents a STORE operation where the

23

value “a” is stored on the variable “x”. By R (x) a we mean that a LOAD of variable “x”

has the returned the value “a”.

P1 W(x)1 W(y)2 R(z)0 R@1 .
1 €12 €13_ r €14 -
-~
-
-~
P2 W@zl ~ R0 R(y)2 R@x)1 -
€21 €22 €23 €4

Figure 9: Causal Consistency Model.

As can be observed, the “R (x)” operation on processor P2 has returned the value

“0” . This represents that both events “e;;” and “e,,” are concurrent, while events “e,3” is
causally related to event “e;,”.

Causal Consistency was implemented on the Clouds Distributed Operating System.
This implementation uses a vector timestamp [LAM79] to capture the evolving causal
relationships. This implementation of Causally Consistent memory will use invalidates to
resolve inconsistencies and, although more relaxed than Sequential Consistency, it does not

resolve the problem of false sharing.

5. Weak Consistency Model

A consistency model can be derived by relating memory requests ordering to
synchronization points in the program [GLLG90]. The delays imposed by the sequential
consistency model are unnecessary if appropriate synchronization mechanisms are
enforced. Given that all synchronization points are identified, we need only to ensure that

memory is consistent at those synchronization points. This scheme has the advantage of

24

permitting multiple memory accesses to be pipelined [AH90]. Sarita and Hill define Weak
Ordering as follows:
“Hardware is weakly ordered with respect to a synchronization model if and only if
it appears sequentially consistent to all software that obey the synchronization model.”
The synchronization model defined in [AH90] is named Data-Race-Free-0 (DRFO)
and is closely related to the happens-before relation [LAM79] which can be defined as the

irreflexive transitive closure of program order and synchronization order:

hb - = (po U SO)+

where po represents program order and so, synchronization order, respectively.

The complete definition for the synchronization model DRFO is given below:

A program obeys the synchronization model DRFO if and only if: (1) all
synchronization operations are recognizable by the hardware and each accesses exactly one
memory location, and (2) for any execution of the idealized system all conflicting accesses
are ordered by the happens-before relation corresponding to the execution. In this
definition, two accesses are said to conflict if they access the same location and they are not
both reads. The figure below describes an example of an execution that obeys the DRF0

model.

P1 P2 P3 P4 P5 Pé6
W(x) W(y) W(z)
po po po
R(x) S(a) k S(b) 50
S(a) S(b)
po po
) $(c) S0
S(c)
po
Rﬁéz)

Figure 10: An example of DRF0 [AH90].

25

In [GLLG90] a slightly different set of conditions is listed, which for consistency
reasons we will adopt for the remainder of this document:

* Before an ordinary LOAD or STORE access is allowed to perform with respect
to any other processor, all previous synchronization accesses must be performed;

* Before a synchronization access is allowed to perform with respect to any other
processor, all previous ordinary LOAD and STORE accesses must be performed;
and

* Synchronization accesses are sequentially consistent with respect to one
another.

The first and second rules assure that the instructions inside the critical section stay
inside and those outside stay outside as observed by any other processor. The third rule
assures that the synchronization variables can create critical sections. The example below
depicts a correct and an incorrect outcome for a Weakly Ordered program.

As can be seen from Figure 11a there are no guarantees for the outcome before the
synchronization point. In contrast, after the synchronization is performed the local memory
should be brought up to date returning the most recently values written to it. Therefore, on
Figure 11b it can be noted that the value returned by processor P2 is invalid.

In summary, Weak Consistency assures the correctness of parallel programs by

placing tight restrictions on synchronizing instructions and loose restrictions on ordinary

instructions.
Pl:x=1,x=2Synch Pl:x=1,x =2 Synch
» ol
P2: a=x,b=x Synch P2: Synch a=x.
P3: a=x,b=x Synch P3: Syncha=x.
QOutcomes: Outcomes:
P2 ->a=1,b=2=>CORRECT. P2 >a=1=>INVALID
P3 ->a=2,b=1=>CORRECT. P3 -> a=2=>CORRECT
(@ (b)

Figure 11: Weak Consistency valid (a) and invalid (b) sequences of events.

26

6. Release Consistency Model

Release Consistency is an extension of weak consistency that exploits the
information about acquire, release, and non-synchronization accesses. To better describe
the designation below we must describe the notions of competing and conflicting accesses.
Two accesses by one or more processors are conflicting if they are to the same memory
location and at least one of the accesses is a STORE. If a pair of conflicting accesses execute
simultaneously, causing a race condition, then such accesses form a competing pair. If an
access 18 involved in a competing pair, then the access is considered a competing access
[GLLG90].

The following gives the conditions for ensuring release consistency:

+ Before an ordinary LOAD and STORE access is allowed to perform with respect
to any other processor, all previous acquire accesses must be performed;

* Before a release access is allowed to perform with respect to any other

processor, all previous ordinary LOAD and STORE accesses must be performed;
and

» Special accesses (acquire and release) are processor consistent with respect to
one another.

In the above definition ordinary accesses are represented by non competing
accesses and special accesses denote the competing ones.

Therefore, release consistency relaxes the constraints of sequential consistency in
three ways:

* Ordinary reads and writes can be buffered and pipelined between
synchronization points;

* Ordinary reads and writes following a release do not have to be delayed for the

release to complete (i.e., a release only signals the state of past accesses to shared
data); and

* An acquire access does not have to delay for previous ordinary reads and writes
to complete. {CBZ91].

When compared with Weak Consistency we can observe that four of the ordering
restrictions present in Weak Consistency are not present in Release Consistency. First is

that ordinary LOAD and STORE accesses following a release access do not have to be

27

]

delayed for the release to complete. Second, an acquire synchronization access need not be
delayed for previous ordinary LOAD and STORE accesses to be performed. Third, a non-
synchronization special access does not wait for previous ordinary accesses and does not
delay future ordinary accesses. The fourth difference lies in the ordering of special
accesses. For Weak Consistency, the accesses are sequentially consistent while for Release
Consistency the accesses can be Processor Consistent.

This model was developed as part of the DASH project and proved effective at
hiding the effects of memory latency by pipelining invalidation messages caused by writes
to shared data [CBZ91]. Figure 12 depicts the gains in the communication costs that are
achievable through this approach. As can be observed, the processor needs only to stall at
the time of a release operation, STORES are pipelined. Therefore, it introduces a large

optimization when compared to a sequentially consistent program (Figure 7).

P1 Acq Wx Wy

P2

Figure 12: Release Consistency model.

Besides the generic model adopted for the DASH implementation there are two
other variants for Release Consistency: Eager Release Consistency (e.g., Munin) and Lazy

Release Consistency (e.g., Treadmarks).

a. Eager Release Consistency

When a thread performs a release, it stalls until all modifications to shared
data have been performed (invalidated/updated). This new scheme buffers writes to shared

data until the subsequent release, at which point it flushes the buffered writes. Ideally, this

28

strategy reduces the number of messages transmitted from one per write to one per critical

section when there is a single replica of the shared data.

P1 Acq Wx Wy Rel
Acq_loc buffer update messages Ack for (x,y)

Single Update Msg ——»-

>

Figure 13: Eager Release Consistency model.

As we observe in Figure 13, this approach increases the latency of a release
when compared to the Release Consistency Model. Nevertheless, the reduction in the
number of messages may outweigh the effect of higher release latencies. Carter [CBZ92]
also proposes the use of Update instead of an Invalidate-based coherence protocol since the
above approach only solves the cost of writes, but has no effect on read misses. When the
ratio of read/write to shared data is relatively high, the effect of read misses can be
mitigated by using an update-based protocol. This approach is feasible when used in

combination with the buffered approach as is the case of Munin.

b. Lazy Release Consistency

When a thread performs an acquire, all “stale” data is discarded or updated.
This approach is adopted in the implementation of Treadmarks [ACDB94] and CarlOS
[KF94]. Compared with Eager Release consistency it causes fewer messages to be
exchanged. At the time of a lock release, Munin sends messages to all processors which
cache data modified by the releasing processor. In contrast, in Lazy Release Consistency

(LRC) messages only travel between the last releaser and the new acquirer.

29

LRC is somewhat more complicated than eager release consistency. After a
release, Munin can forget about all modifications that the releasing processor made prior to
the release. This is not the case for LRC, since a third processor may later acquire the lock
and need to see the modifications.

More formally, in Lazy Release Consistency the propagation of
modifications is further postponed until the time of the acquire. At this time, the acquiring
processor determines which modifications it needs to see according to the definition of
Release Consistency. To do so, LRC uses a representation of the happened-before relation
introduced by Adve and Hill [AH90]. Release Consistency requires that before a processor
may continue past an “acquire”, all shared accesses that precede the acquire according to
happens-before-1 relation must be performed at the acquiring processor. LRC guarantees
that this property holds by propagating write-notices on the message that affects a release-
acquire pair. A write-notice is an indication that a page has been modified in a particular
interval, but it does not contain the actual modifications. Each new interval begins with
each special access performed by the corresponding processor. Such intervals are, in turn,
used inside Vector Clocks [LAM79] to enforce the happened-before relation among the
Processors.

On an acquire, the acquiring processor, P;, sends its current vector
timestamp to the previous releaser, P;. Processor P; uses this information to send to P; the
write-notices for all intervals of all processors that have performed at P; but have not yet
performed at P;. Releases are pure local operations in LRC and no messages are exchanged.

For the case of an update coherence protocol the acquiring processor
updates all pages for which it received write-notices. In contrast, for an invalidate protocol,
the acquiring process invalidates all pages for which write-notices were received. Figure

14 gives an example of both update and invalidate protocols.

30

Processor 1 Processor 2 Processor 3

acquire_lock acquire_lock acquire_Jock
x=95 ?l = c=y
release_lock release_lock release_lock
P1 [x] acq w(x)5 rel

—
T\inv(x)
P2 [yl
acq w(y)6 rel
T \ inv (x,y) f&n(y)
P31yl
aca 1(y) rel

T o
(a) Invalidate Protocol
P1[x] acq w(x)5 rel
>
update (x)
P2 [y] T\
acq w(y)6 rel -
Ndate x,y)
P3
[yl acq r(y)6 rel -

(b) Update Protocol.

Figure 14: LRC Invalidate protocol (a) and LRC update protocol (b).

Figure 15 compares LRC with the generic version of Release Consistency.
As can be observed, Lazy Release Consistency will have fewer messages, but the
implementation of such mechanism will be far more complex. The number of messages
will also be smaller than implementations of Eager Release Consistency (Munin), since for
both invalidate and updated protocols it will be required that every process that is in the

copyset receives a release message.

7. Entry Consistency Model
Entry Consistency was introduced with the Midway DSM system [BZS93]. For

entry consistency, data is only consistent on an acquiring synchronization operation, and

only the data known to be guarded by the acquired object is guaranteed to be consistent at

31

the time of the acquire. Communication between processors occurs only when a processor

acquires such synchronization objects.

P1 W(x)Rel Release Consistency

L.

P2 K Acq W(x) Re/ /

P3 \ \ Acq W(x) Rel /_b
—

Lazy Release Consistency

P1 W(x)Rel

:
P2 \ Acq W(x) Rel /

:
P3 \ Acqg W(x) Rel /

-

Figure 15: Comparison between RC and LRC models.

Formally, a memory exhibits entry consistency if it meets the following conditions:

» An acquire access of a synchronization variable is not allowed to perform with
respect to a process until all updates to the guarded shared data have been
performed with respect to that process;

» Before an exclusive mode access to a synchronization variable by a process is
allowed to perform with respect to that process, no other process may hold the
synchronization variable, not even in nonexclusive mode; and

+ After an exclusive mode access to a synchronization variable has been
performed, any other processor’s next nonexclusive mode access to that
synchronization variable may not be performed until it has performed with
respect to that variable’s owner.

The first condition states that when a process does an acquire, the acquire may not

complete until all the guarded shared variables have been brought up to date.

32

The second condition states that before updating a shared variable, a process must
enter a critical region in exclusive mode to ensure that no other process is trying to update
it at the same time.

The third condition declares that if a process wants to enter a critical region in
nonexclusive mode, it must first check with the owner of the synchronization variable
guarding the critical region to fetch the most recent copies of the guarded shared variables.

Although entry consistency enables the use of low overhead consistency
mechanisms, writing an entry consistent program requires more work than writing one on
a more stronger model. For example, every synchronization object must be identified;
every use of such an object must be explicit; every shared data item must be associated with
a synchronization object; and synchronization accesses should be qualified as read-only or
read-write for best performance [BZS93].

In summary, entry consistency requires:

« Shared data to be accessed inside critical section;

+ All shared data has to be associated with a single synchronization variable (e.g.,
a lock); and

» When a lock is acquired (entry to a critical section), only those variables
associated with lock are made consistent.

In the next chapter we describe the main features of existing systems focusing on

both hardware and software implementations.

33

III. DSM SYSTEMS OVERVIEW

In this chapter we review the main features of some existing DSM implementations.
We divide the reviewed systems into hardware and software implementations. Our goal is
to point out the strengths and weaknesses of each individual system. These features will be

recalled again when our approach is described on Chapters IV and V.

A. HARDWARE IMPLEMENTATIONS

1. KSR-1
The KSR-1 implements the “ALLCACHE” [R0O92] memory model. The

“ALLCACHE” is a hardware message-based distributed virtual memory system which
enforces the Sequential Consistency Memory Model. Each processor is associated with a
32 MB cache unit, all of which are tied together by a very fast slotted-ring communications
mechanism, across which a single address space is defined. The KSR-1 architecture
exploits locality of reference by organizing a number of “ALLCACHE” Engines in a
hierarchy. At the lowest level are the ALLCACHE Group:0s (with 32 processors in each
group) which consists of the ALLCACHE Engine:0s and the local caches associated with
them. Therefore, an ALLCACHE Engine:0 contains the directory which maps from
addresses onto the set of local caches within its group. An ALLCACHE Engine:1 includes
the directory which maps from addresses into its constituent set of ALLCACHE Group:0s.
The ALLCACHE Engine is constructed with a “fat-tree” topology so that the bandwidth
increases at each higher level of the ALLCACHE Engine.

The distinctive feature in this design becomes apparent when data is required which
is not located within the local memory and a request is generated: what is returned is not
simply the data, but the address as well. They are returned because there are two types of
addresses on the system: System Virtual Address (SVA) and Context Address (CA). The
SVA is a 64-bit global system-wide reference of any given location (at byte level) in the

memory system. The CA type are the addresses referenced by each individual task. CA

35

addresses are translated into a SVA by the processor using a translation table managed by
the ALLCACHE Engine. CA memory is allocated by segments that map into SVA
segments. Segments in different CA spaces may be mapped to the same segment in SVA
space, thus allowing sharing between two processors. In these procesSors each page is a set
of 128 subpages of 128 bytes each (total 16 KB). Pages (16 KB) are used as allocation unit
and subpages (128 bytes) as coherence unit for the system.

Memory within the KSR-1 is formed within a scalable hierarchy based on the
average latency to return an address from a given initial location. Physically, there are four
levels of memory access:

» A 512 KB subcache for each processor.

* A 32 MB cache for each processor cell.

» A 996 MB remote cache, on the same local ring:0.

* A 31744 MB remote cache, on distinct rings (ring:1).

The communication rings (interconnect) are hierarchically structured, with a first-
level ring (Ring:0) grouping 32 processors together, and a second-level ring (Ring:1)

grouping together up to 34 first-level rings. Figure 16 describes this hierarchy.

Processor

Figure 16: The KSR-1 ALLCACHE Hierarchy.

36

A subpage fault (128 bytes) will generate a request which is placed into an open slot
on the communications ring. The slot is matched against the cached elements associated
with every processor on the local ring (ring:0). If one of the processors is the owner of the
data element requested it will put the data plus address on the open slot, otherwise this
request is forwarded through the Ring Routing Cell (RRC) to the next hierarchical level
(ring:1).

The coherence protocol enforced by this architecture is write-invalidate and a
snoop read-broadcast [HN93). Therefore, at any time there is a unique block owner on the
system. Whenever a task tries to write to a location, the ownership of that subpage is
transferred to that processor and an invalidate message is sent to other processors that
currently cache copies of that data.

The system provides software instructions that allows for remote data store on other

processors and also issues prefetch calls retrieving data before it is actually needed.

2. DASH

The DASH architecture’s main feature is the introduction of a new consistency
mechanism “Release Consistency”. As for other hardware implementations in which the
unit of coherence is small (16 bytes), DASH also adopts a write-invalidate coherence
protocol.

The DASH system consists of a two-level, hierarchically organized structure. At
the top level, the system consists of a set of processing nodes (clusters) connected through
a pair of wormhole meshes (Figure 17) where each processing node consists of four
processors linked through a bus-based connection (Figure 18).

Intra-cluster cache coherence is implemented using a snoopy bus-based protocol,
while inter-cluster coherence is maintained through a distributed directory-based scheme

by implementing an invalidation-based coherence scheme. It is the directory responsibility

37

to summarize the information for each memory line, and to specify the clusters that are

currently storing it [LLIN92].

‘ t - Request Mesh

—ReplyMesh __

=

Figure 17: DASH High Level Structure.

The DSM mechanism for the DASH prototype implements a MRSW Type
algorithm. Therefore, each memory location can be in one of three states:
* Uncached: not cached by any processing node at all;

* Shared: in an unmodified state in the caches of one or more nodes (Multiple
Readers); or

* Dirty: in a modified state in the cache of some individual node (Single Writer).

Processor
1st level and Dcache

Directory
and
Intercluster

Interface

2nd level cache

Cluster 1

Figure 18: DASH Processing Node.

38

The key part of the DSM mechanism is the Distributed Directory which is
implemented on all clusters. Each memory location has an assigned Home Directory. Data
ownership can dynamically change whenever a processor performs a write request on the
same address managed by the Home directory of another cluster. In this situation the
memory location becomes dirty and the Home Directory invalidates all remote copies
cached on remote clusters. Note that while data ownership can dynamically change the
Home Node for any particular block remains fixed. On a memory request, the Home
Directory takes one of two actions: if the memory location is dirty it forwards the request
to the current owner, otherwise the requesting block is included on the copyset list and the
data is forwarded. The problem with the Directory approach is its limited scalability due to
the use of a bit vector with 1 bit for each cluster. A possible solution would be the use of a
limited-pointer directory as used on the FLASH implementation [KOHH94].

Besides supporting the Release Consistency model, where writes are pipelined,
DASH uses software-controlled nonbinding prefetching [LLIN92] to hide the network
latency effect. DASH also provides efficient Fetch-and-Op primitives to reduce the

synchronization overhead.

B. SOFTWARE IMPLEMENTATIONS

1. Operating System Level - Clouds

The Clouds operating system belongs to a class of object-based distributed
operating systems and is built on top of a minimal kernel called Ra. The paradigm
supported by Clouds provides an abstraction of storage called objects and an abstraction of
execution called threads. All data, programs, devices, and resources are encapsulated in
objects. Therefore, objects represent the passive entities of the system. Activity is provided
by threads, which execute within objects.

At the conceptual level, an object is a virtual address space. In contrast to
conventional operating systems, objects in Clouds are persistent and are not tied to any

thread. Since it does not contain a process, it is completely passive. The contents of each

39

virtual address space are protected from outside accesses so that memory in an object is
accessible only by the code in that object and the operating system. In summary, each
object is an encapsulated address space with entry points at which threads may commence
execution [DCMP91].

To allow concurrent execution of more than one computation in the same object,
the system provides a set of shared memory style synchronization primitives. The unit of
sharing in Clouds DSM is a segment. Associated with each segment is a node called the
owner where the segment resides on stable storage. The DSM Server object at the owner
node is responsible for maintaining the consistency of the segment.

To unify synchronization with data transfer, Clouds adopts a “lock-based”
coherence protocol. In this protocol lock requests (both exclusive and shared) result in the
page associated with the lock being sent to the requester along with the granting of the lock,
if and only if the requesting mode is compatible with the current mode for the segment,
otherwise the request is queued. Upon lock release, the associated page is sent back (if
modified) to the server. Reads or writes to shared data without explicit locking follow
single copy semantics that do not allow multiple readers or writers. For this purpose two
primitives are supported: get and discard. In short, the Clouds DSM system is implemented
integrated with the operating system providing a low overhead when manipulating segment
misses. Also, by enforcing consistency at defined synchronization points, this DSM system
enforces the Release Consistency Model. The lock-based coherence protocol was an

innovation when compared with existing DSM systems.
2. Runtime Libraries

a. Midway

Midway is a Distributed Shared Memory System that supports the Entry
Consistency Model. As described in Chapter II, Entry Consistency is a relaxed consistency
protocol that requires the explicit association of shared data to synchronization objects.

Upon a release operation the changes to the data associated with the lock are propagated to

40

the new acquirer by sending modifications (diffs) to the data object. To keep consistency,

each processor stores a set of diffs to the corresponding object. To reduce communication
traffic and guarantee that all changes are made visible to all processes, each process keeps
a monotonically increasing counter (logical clock [LAM79]) which is incremented
whenever a synchronization access is performed. At the acquire time the requester sends
also its Vector Clock. The lock owner, in turn, forwards all changes that are greater than
the received timestamp. It is the acquirer’s duty to coalesce all changes and update its diff
set. If this set’s size becomes greater than the data associated with the lock, the data itself
is propagated to the new lock owner.

Lock ownership is defined using a Distributed Queue Algorithm similar to
the Mach’s shared memory server [FBYR88]. This algorithm is based on the probable
owner concept. The lock request is sent to the node that is currently the probable lock
owner. If the node that has received the request does not own the lock anymore it forwards
the request to the next probable owner, creating a chain of messages. This algorithm has a
worst case complexity of O (n), where “n” is the number of processes that are accessing
the same critical section. The drawback is that it has “n” possible points of failure per lock
transaction. Figure 19 provides an example of this algorithm as originally proposed by

Florin [FBYR88]. In Figure 19a processor P performs a lock request. The request is sent

to the “probable owner”, the node designated as root. Since the lock ownership has already

changed to P, the root node forwards the request to the next probable owner, P,. Again the
current owner has altered and the request is forwarded to Py which then releases the lock
(Figure 19b). The process is repeated again when P, performs a lock request (Figure 19¢).

Synchronization objects can be of two types: non-exclusive (data can only
be accessed on read operations) and exclusive (data can be accessed for both read and write
operations). The synchronization objects ownership is exclusive. By exclusive ownership

we mean that each synchronization object, at any time, has an unique owner. Replication

41

of data is only allowed for data whose synchronization access is non-exclusive (read-only
data).

Midway also provides two other consistency models: processor and release
consistency. The idea is to allow the programmer to develop his application initially using
a stronger consistency model and use Entry Consistency on further refinements based on

the data access patterns.

Lock Owner

e Req. Forward e
Lock Regq.
(a)

Lock Owner

Lock Granted
(b)

Figure 19: Distributed queue locking scheme.

There are two implementations for Midway: VM-DSM (Virtual Memory
DSM) [BZS93] and RT-DSM (Runtime DSM) [ZSB94]. Although both versions adopt the
Entry Consistency Model as the basic consistency mechanism, their difference lies on the
embraced strategy for detecting and collecting writes to shared data in a software-based
DSM. Both strategies rely on compiler assistance to insert primitives for marking shared

data objects as dirty. In the VM-DSM approach the coherence is constrained to the

42

since the compiler inserts write-detection primitives on every store operation. It is
interesting to consider the difference(s) between the two implementations. We summarize

below some of the reasons for RT-DSM.

Table 2: Distinction Between RT and VM implementations

1. Writes have high overhead since they are detected with a page fault.
This cost is amortized if there is a large number of writes per page.

2. The page size is generally too big to serve as a unit of coherence,
inducing false sharing. As we saw in Chapter II, there is a limit that we
can reduce the unit of coherence without inducing larger overheads due
to problems of spatial locality.

1. It tends to have lower average update latency because it can avoid the
Operating System altogether.

corresponding page size. On the other hand, on a RT-DSM the coherence unit is flexible,
|
|

2. RT-DSM directly supports variable sized objects eliminating false-
sharing and the overhead necessary to accommodate it.

3. RT-DSM efficiently provides a detailed update history, which allows it
to minimize the data transferred to maintain consistent memory.

In summary, for coarse-grained applications that exhibit little actual
sharing, a VM-DSM is advantageous. In contrast, for a program that synchronizes

frequently, the RT-DSM system may have better performance.

b. Munin

Munin ([CBZ91], [CBZ92]) is a software DSM system that implements the
Eager Release Consistency Model.
The Munin runtime manipulates two major data structures as depicted in

Figure 20: a delayed update queue and an object directory. The former is used to buffer the

43

updates until a release operation is performed. The latter maintains the state of the shared
data set being used by the local user threads. On the Object Directory all shared variables
on the same physical page are treated as a number of independent page-sized objects. In
contrast, variables that are larger than a page are handled as a number of independent data
objects.

Instead of the Centralized approach adopted on previous software
implementations, Munin employs a Distributed Directory scheme similar to the one used
in DASH. The scheme is enforced with the aid of two concepts: dynamic data ownership
protocol (viz Midway) and by distributing the state information of write-shared data

through the copyset nodes.

Network

Figure 20: Munin Runtime System [CBZ92].

The major goal of this system was to reduce the amount of communication
needed to support DSM. Towards this purpose, Munin introduced three innovative features

when compared to previous DSM implementations:

44

(1) Software Release Consistency. Munin implements Release
Consistency inspired on the DASH project [LLGN92]. The major distinction between the
two approaches is that Munin buffers the updates until the release is performed, while the
DASH system pipelines them. Both systems send the updates to all nodes that are known
to be currently holding a copy of the page. This implementation of Release Consistency

became known as Eager Release Consistency.

(2) Multiple consistency protocols. Based on observations on the
data access patterns, five major types were distinguished: conventional, read-only,
migratory, write-shared and synchronization.

» Conventional shared variables are replicated on demand and are
kept consistent using an invalidation-based protocol, that requires
an owner to be the sole owner of that copy. For Read-only shared
data once initialized no further updates can occur.

* Migratory data is typically the data that is accessed within
critical sections and is made consistent by sending an update
message to the new owner and invalidating the local copy.

* Write-shared variables are frequently written by multiple
threads concurrently. Its main advantage is to allow considerable
reduction of the False Sharing effects.

* Synchronization Variables. There are three types of
synchronization variables which are supported by the system:
locks, barriers, and condition variables. These variables are
accessed only through special synchronization primitives
provided by library routines. The locking protocol is the same as
the one adopted on Midway.

Modifications to the shared-variables are buffered until
synchronization requires their propagation. To reduce the message size each process sends
only the modifications that were applied to the page. As can be seen from Figure 21 each
page is initially write protected. When the local thread tries to write into it, a twin copy is
generated and the original page is marked as writable (Figure 21a). When a release
operation is performed the page is compared with its twin copy and the resulting diff is send

to the other copyset nodes (Figure 21b).

45

Diff

Delayed update :
Queue >

Compare &
Encode

Copy on write Copyset

Page
X
> Page Page
Make original
Writable X X X
Write protect
(if lcopyset! > 0)
(a) (b)

Figure 21: Write-Shared Protocol: twin creation when a page is accessed for writes
(a) and sending out diffs (b) when a release operation occurs.

(3) Update with timeout. To avoid sending unnecessary update
messages to nodes that still remain in the copyset, but are not referencing the page, Munin
implements a timeout mechanism in which copies which are not accessed during the last

timeout interval are discarded.

C. Treadmarks

Treadmarks [ACDB94] is a software library DSM system that implements
the Lazy Release Consistency Model as a consistency mechanism. LRC, described in
Chapter II, performs the updates at the time of an acquire instead of the release as is the
case for the Eager model (Munin). Another difference among the two models is that the
updates are forwarded only to the process that is acquiring the synchronization variable
instead of sending updates to all processes that currently cache that data. This considerably
reduces the number of messages and the delay on synchronization operations.

This set of optimizations do not come for free. After an update, Munin

(Eager Release Consistency) can forget about all the changes the releasing processor made

46

prior to the release. This is not the case for Treadmarks (LRC). On a release operation the

set of modifications (diffs) have to be cached as is the case of Midway [BCS91], so that a
third processor is able to see all alterations that were performed to the data block. To do so
Treadmark uses vector timestamps to represent the happened-before-1 partial order defined
in [SH93].

When a processor executes an acquire, it sends its current vector timestamp
in the acquire message. The process that has last performed a release (and is currently the
lock owner) then piggybacks on its response a set of write notices. These write notices
describe the shared data modifications that precede the acquire according to the partial
order. As described on Chapter II, a write-notice is an indication that a page has been
modified, but it does not contain the actual changes. The acquiring process then determines
which of the incoming write notices contain vector timestamps larger than the timestamp
of its copy of that page in memory. For these pages, the shared data modifications described
in the write notices must be reflected in the acquirer’s copy. To accomplish this Treadmark
currently invalidates its copies. It is worth mentioning that in [DKCZ94] it is proposed to
employ a hybrid coherence protocol in which modifications performed at the releasing
node are updated while for pages for which write-notices and no updates were received will

be invalidated.

C. COMPILER INSERTED PRIMITIVES - ORCA

Orca is an object-based language1 whose sequential statements are based roughly
on Modula-2. Orca was originally designed for the Amoeba distributed operating system
and it depends on the Operating System’s reliable broadcast feature to enforce consistency
among objects that are replicated.

Orca provides two important features for distributed programming: objects and the

Jork statement. Objects are like Abstract Data Types in Ada83. It encapsulates internal data

1. By object-based language we mean a language with no support for inheritance and some forms
of polymorphism.

47

structures and methods for manipulating them. Each method can be viewed as a pair of
statements: guard + block. The fork statement is used to create new processes on a user-
specified processor. Parameters, including objects, may be passed to the new process,
resulting in object replication.

The provision of object replication is the main feature that distinguishes Orca from
other languages like Ada83. Objects can be in two states: single copy or replicated. A
method that performs on a non-replicated object is performed by simply locking/unlocking
the object. For replicated objects consistency becomes a very important issue. As
mentioned above, the current language implementation enforces consistency through
broadcasting the objects’ name, the methods, and the parameters. Each remote object then
performs the operation, thus becoming consistent with the local object. An important
requirement for this broadcast operation is that it must be reliable and the events should be
totally-ordered.

For systems that do not enforce a reliable and totally-ordered broadcast protocol,
each object will have a primary copy which is responsible for updating all replicated
objects. The update of replicated objects is performed in two phases. The first phase will
consist of the object sending a message to the primary copy, locking and updating it as
before. It is the primary copy’s role then to lock all remote copies. On the second phase the
primary copy will update the replicated objects.

For both the primary-copy algorithm or the reliable-broadcast the final outcome is

that the runtime system enforces a sequentially consistent view of the system.

D. HARDWARE/SOFTWARE COMBINATION - FLASH

FLASH’s design exemplifies the current trend on multiprocessor systems
architecture to integrate DSM and message passing. This is also valid for implementations
of MIT’s Alewife and *T and the Meiko CS-2 [KOHH94].

FLASH is a single-address-space machine consisting of a large number of

processing nodes connected through a pair (request/reply) of wormhole meshes.

48

Differently from the DASH implementation, each processing node consists of an unique

processor, local memory and a “MAGIC” chip which is responsible for integrating the
memory controller, I/O controller, network interface, and a programmable protocol
Processor.

FLASH nodes communicate by sending intra- and inter-node commands, referred
to as messages. The provision of a programmable protocol processor within the “MAGIC”
chip allows the implementation of multiple protocols. These protocols are implemented on
protocols handlers by defining the kind of messages that will be exchanged (the message
types). Currently, the FLASH prototype enforces two types of protocols: the Cache-
Coherence and Message Passing protocols.

The Cache-Coherence protocol is directory-based and is similar to the one used on
the DASH implementation with minor modifications: the coherence unit was enlarged
from 16 to 128 bytes and, for scalability reasons, it uses dynamic pointer allocation instead
of a bitmask as was the case of the DASH prototype. Another distinction between the two
machines is that invalidation acknowledgments are collected at the “Home” node for the
FLASH implementation. For this protocol all messages are divided into requests (read,
read-exclusive and invalidate requests) and replies (read and read-exclusive data replies
and invalidation acknowledgments).

The Message Passing protocol defines a set of primitives for enforcing
synchronization and block transfer. The latter set was designed to fulfill three requirements:
provide user-level access to block transfer without sacrificing protection; achieve transfer
bandwidth and latency comparable to a message-passing machine containing dedicated
hardware support for this task; and operate in harmony with other key attributes of the

machine including cache coherence, virtual memory, and multiprogramming [KOHH94].

49

50

IV. LAZY DATA MERGING CONSISTENCY MODEL

This chapter gives a comprehensive description of the Data Merging (DM)
consistency protocol as proposed by Karp and Sarkar in [KS93] and the modifications
introduced to it that resulted on Lazy Data Merging (LDM). Section A describes DM as
originally proposed. Section B defines LDM and in Section C we introduce some examples

that illustrate and compare both protocols.

A. THE DATA MERGING DSM PROTOCOL - AN OVERVIEW
In [KS93] a new DSM protocol is presented: Data Merging (DM). DM is based on

the observation that any sharing that occurs between synchronization points during a
parallel execution is false. For false sharing it is not necessary for caches to be consistent;
only global memories need to be consistent. In particular, any concurrent updates to the
same data block can be deterministically merged at global memory [KS93]. Therefore,
DM, like other “relaxed” consistency protocols (e.g., Release Consistency, Entry
Consistency, etc.) relies on explicit synchronization operations to enforce consistency.
Data Merging also addresses the problem of false sharing by providing means for
deterministically merging data blocks.

This protocol introduces a new feature; the ability to combine message passing and
DSM. This characteristic is indicated for data sets which present poor locality of reference
or to enforce sequential consistency, since it provides exclusive access to the data elements.
Therefore, a remote thread will be able to explicitly perform remote read/write operations
on individual data elements through the use of “Bypass Cache” messages.

The DM protocol involves two fundamental components: Global Memory Units
(GMU) and Processing Elements (PE). The GMU can be better described as the “Home”
node for a set of data blocks. The current proposal adopts a distributed/fixed manager
approach for dividing the shared address space. Therefore, multiple GMUs are allowed,

each one being held responsible for a part of the shared address space.

51

The Processing Elements represent the remote threads in which the actual
computations are performed. Each PE has a “local memory controller” which is responsible
for performing data requests/updates when necessary. In the original protocol updates are
addressed to the corresponding GMU. This characteristic can also be observed in the

DASH implementation.

B. DATA MERGING PROTOCOL: DEFINITIONS

Before proceeding on with this chapter, we need to define, for both the GMU and

PE, each component element and its corresponding role.

1. Processing Element (PE)

PE is the processing unit that is replicated on multiple processors in a
multiprocessor system and is composed of':

« Local CPU;

+ Local Memory - The memory hierarchy level in the PE that interfaces with the
global memory. If the PE itself has a multilevel memory hierarchy, then “local

memory” refers to the lowest level (furthest from the CPU) contained within the
PE; and

+ Local Memory Controller - The control logic for issuing global memory
requests from the PE.

2. Global Memory Unit (GMU)

GMU is the memory unit that is replicated to obtain a shared global memory that is

addressable by all PEs.

* Global Memory Module - A piece of the shared global memory. Some storage
in the global memory module is reserved for GMU state information; and

* Global Memory Controller - The control logic for handling global memory
requests from PEs.

One implementation, suggested by Karp and Sarkar consists of multiple PE

connected to a set of GMUs through an Interconnection Network. This organization is

52

depicted in Figure 22. An alternative design would allocate to each node both the
processing element and the global memory unit. To provide a scalable design, such nodes
should be organized using a Hierarchical Bus or Ring Network as is the case for the DASH,

Alewife, and FLASH multiprocessor architectures.

C. THE DATA MERGING PROTOCOL

Similar to existing software implementations (i.e., Munin, CarlOS, and
Treadmarks), this mechanism addresses the problem of false sharing by allowing multiple
writers to the same data block. The distinction is that there is no required protocol-type
annotation for shared variables as is the case of Munin in which data variables that allow
multiple writers should be annotated as “write-shared”.

For data that is accessed by multiple processing elements, it is assumed that a
delayed memory consistency model and the synchronization mechanisms that it requires
are implemented. This mechanism also provides direct accesses to the Global Memory

through “Bypass Cache” messages.

_GMU1 GMU N

Figure 22: Data Merging Components.

53

The actions performed by each system component can be described as follows:

1. Processing Element

*» Request cache block: request a copy of a data block from the GMU that owns
it;

+ Flush Data: when replacing a dirty cache block, send its contents back to the
GMU that owns the original data block;

+ Report Replacement: when replacing a clean cache block, report its
replacement to the GMU that owns the original data block;

+ Bypass-read data element: the CPU reads a data element from global memory
without storing a copy in the PE’s local memory;

+ Bypass-write data element: the CPU stores a data element in global memory
without storing a copy in the PE’s local memory.

Bypass read and Bypass Write messages may be used to enforce sequential
consistency, rather than delayed consistency, on selected accesses to global memory. They
are also more efficient for reads/writes accesses that have neither temporal nor spatial
locality. The state transition diagram for each block within the PE node is illustrated in

Figure 23.

FSM - PROCESSING ELEMENT

Flush to GMU

B ass-Read
Report B%ass—Write

Replacement

Figure 23: Processing Element Finite State Machine.

54

The cache block can be made invalid either by normal cache management policies
or by an invalidate signal sent by the GMU. If the block is dirty it is flushed; if clean, its

replacement is reported to the GM, but no data is moved.

2. Global Memory Unit Actions

The GMU keeps storage for the global data blocks and for monitoring the state of
each individual block. For this purpose it has two major data structures: a dynamically-
updatable “Suspend Queue” capable of holding up to one entry per process in the
multiprocessor system and a “bitmask” that keeps track of the state of each individual
element within a data block. Each GMU also maintain the following state variables to
monitor the state of each individual block. The state transition diagram for each block
within the GMU node is illustrated in Figure 24.

» Counter (C): Identifies the number of PEs that currently have a copy of the data
block in their local memories.

» Suspend Bit (S): Indicates whether or not a process should be suspended when
attempting to access the data block.

* Bitmask: The number of bits corresponding to the number of elements in the
data block. Its purpose is to identify dirty elements in a data block.

FSM - Global Memory Unit

Replaced

Send

Send Block Block

C=0
Unlock

Flushed
Flushed
Replaced

Figure 24: Global Memory Unit Finite State Machine.

55

3. Actions Performed by the GMU in Response to the Processing Element

Requests

a. Request Cache Block

 The suspend bit (S-bit) = 0: The GMC increments the counter and
sends a copy to the PE;

« The suspend bit (S-bit) > 0: The GMC inserts the data block request,
requesting processor ID and current time stamp into the GMU’s suspend
queue.

b. Flush Data

In this case, the PE replaces a cache block in its local memory and sends the
contents of the old cache block (C) to be merged with data block D in the GMU. There are
two cases of interest for the state information associated with data block D:

+ Counter = 1 and S-bit = 0: The GMC stores cache block C into data
block D and resets the counter to zero.

* Otherwise: In this case the GMC uses the bitmask to merge selected
words from cache block C into data Block D, by comparison on a word-
by-word basis of the two blocks. If the words are different, set the
corresponding bit of the bit mask to one and set the suspend bit to 1. If the
Counter becomes zero, then perform a bitmask-reinitialize operation.

¢. Report Replacement

The PE sends a notification of the replacement of a data block without
actually sending any data. For this case all is needed is to:

+» Decrement the Counter.

» If the Counter becomes zero, then perform a bitmask-reinitialize
operation.

d. Bypass-Read Data Element

The GMU sends the data element to the requesting processor. No state

information needs to be checked or modified.

56

e. Bypass-Write Data Element

When a PE writes a data element by bypassing local memory (cache) the
GMU updates the corresponding global memory location. No state information needs to be

checked or modified.

f. Lock

In this case the processing element has requested that the block be locked.

« If the S-bit is set, insert the request into the GMU’s suspend queue along
with the requesting process “id” and a special flag in place of the time
stamp.

« If the suspend bit is not set, set the bit, and return its old value.

g. Unlock

Set the suspend bit to zero and perform a bitmask reinitialize operation.

h. Test and Set Lock

Set the suspend bit to one and return the previous value of the suspend bit

to the requesting process.

i. GMU Internal Actions

(1) Initialization: For each block of global memory a NULL

bitmask pointer, a Counter, and Suspend Bit should be initialized.

(2) Receive a dirty page: The counter should be decremented
whenever a dirty page is received. The Bitmask pointer should be initialized with all
elements set to zero. This represents the occurrence of multiple writers, but it solves the

problem of false sharing.

(3) Bitmask reinitialize: When the Counter becomes 0, deallocate
the bitmask and Suspend Bit. Check if this event affects any processor in the suspend

queue.

57

(4) Scan the Suspend Queue: To avoid deadlocks the GMU
controller should periodically scan the suspend queue. If any data block request is older
than a threshold age, the GMU should perform a timeout procedure by broadcasting an
invalidate message, forcing the cached data block to be flushed. The existing copies of the
data block are then merged, becoming consistent. The requesting process is then awakened

by the release of the data block.

D. LDM RATIONALE

The suggested extensions to the DM protocol led us to define a “lazy” version
which we name “Lazy Data Merging”. For this approach all data objects are considered as
“write-shared”. Therefore, program correctness will rely on the adequate use of
synchronization variables by the application programmer.

Our approach introduces some enhancements to minimize the communication/
synchronization overhead generally encountered by software runtime libraries. The
implementation details for this protocol are discussed in Chapter V. A

As with DM we adopt a “distributed/fixed” policy for dividing the shared address
space (static data partition as opposed to the adaptive partition scheme adopted by Munin).
However, our protocol differs from DM by insisting that each node will have both PE and
GMU threads sharing the same address space. Therefore, individual nodes are assigned as
“home” for a specific set of data blocks.

Our goals for the LDM protocol are both the reduction of the average message size
and the number of messages. Message size reduction is achieved by forwarding “diffs” at
the time of a release or a flush operation. We reduce the average number of messages
through the use of a distributed locking scheme [FB88] and the Hybrid Coherence protocol
[DKCZ93]. This combination will decrease the number of messages that will be dispatched
to a single node at the time of a lock release operation when compared to an invalidate
protocol. Also, the main advantage of the distributed locking scheme is to reduce the

contention when compared to the centralized approach.

58

The performance gains that can achieved through the use of “diffs” for pages that
are dirty are not very well defined. The result will be highly dependent on the type of
network, number of participant nodes, granularity of the data coherence unit, etc. Our
proposition is to use “diffs” for all data blocks that are dirty. Our belief is that when the
ratio “processing power/ network bandwidth” is high it is worthwhile in creating diffs.

The next sections will give an overview of this memory consistency protocol and

in Chapter V we describe the mechanisms for implementing the modules specified on

Figure 25.

Local Blocks

Processing

Thread

Synch. |
Directory | g

Object
Directory

Message Handler

oy

Thread

| (GMC + LMO)

Figure 25: Lazy Data Merging Runtime Environment.

59

E. EXTENSIONS TO THE DATA MERGING PROTOCOL

To optimize performance for a software implementation we introduce the following

extensions:

» In Lazy Data Merging the shared address space is structured as a set of shared
data-objects, while in DM the address space is flat.

* In order to reduce the number of invalidate messages each Home node
maintains a Directory with the nodes that currently cache the given page, instead
of broadcasting invalidate messages to all PEs.

 We suggest using a distributed locking scheme [FB88] by employing a hybrid
(invalidate/update) coherence protocol [DKCZ93]. The semantics for the
acquirer are similar to the Lazy Release Consistency model.

» The GMU is co-located with the PE on the same node. Both threads share the
same address space.

* We assume two types of locks: Read and Write. This approach is similar to the
one introduced by Midway. Lock ownership will only be modified if a lock is
acquired for writing.

+ Updates will be encoded by using diffs to the original pages. The purpose is to
reduce the network load, by reducing the size of messages. This approach
imposes some overhead to compute diffs of each page and also requires extra
storage for data blocks that are dirty, so that we can capture all changes
introduced to the data block, but is in large compensated for relatively slow
networks. The use of “diffs” is also an imposition of the protocol for allowing the
correct propagation of modifications on shared data to the last acquirer.

F. THE LAZY DATA MERGING PROTOCOL

As we have already described, the shared address space will be evenly divided
across the set of nodes that are part of the system. Therefore, each node will be assigned as
“Home” node for certain block segments. Each “Home” node will, in turn, be responsible
for performing the data merging operations whenever a block it manages is flushed from
one of the remote caches.

This new approach addresses the problem of false sharing as aggressively as “Data
Merging” does: we move some burden to the programmer, by requiring that all shared data
blocks that are concurrently accessible by multiple nodes should be protected by the

appropriate synchronization mechanism.

60

Besides managing “Home” data blocks, the DSM thread handles data block misses
(detected by catching “SIGSEGV” signals) and performs the data requests to the
appropriate block owner. Other roles are to create diffs for dirty pages (by the time of a lock
release, a global barrier call or when an invalidate message is received), mark the page as

dirty (page protection is set to PROT_WRITE) and update the set of write-notices.

1. Protocol Notation

Before we can describe the protocol itself we need to define the notation that is
adopted, which we believe is appropriate for explaining the LDM protocol by providing
means for representing the messages interchanged and its arguments and the actions

undertaken at both ends (sender/receiver).

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
Time 0 Time 0
: IfA
. action 1

Message [(argl,) . action 2 .action 1

.action 2
Timet Time t

Process Boundary Interprocess Communication Composed actions: a) block of
actions and b) conditional actions
(a) (b) (c)

Figure 26: Notation for description of LDM.

Each process context is inserted within one frame limited by vertical lines. This
representation is depicted in Figure 26a. There are five basic types of processes:

* requesting node: the node which issues either a request for a page, an acquire
lock, or a barrier call;

* home node: the node that is responsible for the block management;
* copyset nodes: the group of nodes that currently cache a copy of the same page;

s lock owner: the current probable owner (see Chapter III for the details).

61

* write-notice node: the node that has last modified a write for that particular data
block.

In general terms a message is described by an arrow that crosses the process(es)
boundary (Figure 26b). The actions may be atomic or composed actions. Composite
actions are involved by a line that extends until the end of the block (Figure 26c¢).
Conditional actions are actions that depend on the internal state of the processing node
(Figure 26c).

All of the above events are described within the domain of time, with the initial

event being represented at time “0” and the last one at instant “f”.

2. Description of LDM actions

This section describes the set of actions that are taken by each node in presence of

the following events: page faults, bypass-cache requests, and synchronization events.

a. Page Fault

The page fault handler! should, in turn, convert the faulty address into the
page number and “hash” it into the appropriate Home node. Our design provides means for
establishing the policy for static division of data among the nodes (i.e., block partitioning,
cyclic stripe partitioning, etc.). The default policy will consist of dividing the shared
address space into blocks of four contiguous pages. Once the home node has been
determined a request block message is issued.

Page requests are handled in the same way as defined on the Data Merging
protocol. Upon receipt of a Request_Block type message, the Home node will verify if the
S-bit is set. If so, the requesting node should be inserted on the Suspend Queue. This
request will remain on the Suspend Queue until S-bit = 0 or a timeout occurs.

If the S-Bit is not set then the Home node includes the requester ID on the

block copyset and forwards the requested block. These actions are described in Figure 27.

1. A SIGSEGYV signal handler.

62

Discrete Time Line.

Timg Requesting Node Home Node Copyset Nodes |, Write-Notice Node
0
« Block Miss.
If Block is associated to
a lock.
. If there is a node
that has issued a write-
notice.
. Sgnd the request to
this node. Request Data Block [Block N); .| - Select the diff for
I | the block.
- Send_Data_Block_I§ff (Block N); . Send the block
diff

|__else send the l%uest to the
appropriate home node

Request Data Hlock (Block N) o

If S-bit = 0 -> insert the
request Id on the block
copyset. Send the block
to the requesting node.

T IfS-bit =1 -> insert thg
request Id on the
Suspend Queue. Reply
with a Block_Process
message.

If a Timeout occurs

[
_—

Invalidate_Messagf (Block_Number)

Jf Block Dirty
. Prepare the diff block
. else
. Reply with a CLEAN
message.

Update/ Cleag Messages

< Merge all updates

___Block Grangd/Block_Process (Block_Num)

. Copy data block to shared
address space.

Note: If the block is missing by the first time, the request should be forwarded to the appropriate home nade, before a diff request
can be issued to the write-notice node. This FLAG should be reset if the data block is also associated with a barrier object.
The merge of Updates will be better defined during the Barrier Call definition.

Figure 27: Performing a Data Block request.

b. Bypass-Cache Messages

(1) Bypass Read Messages: as mentioned before, our protocol
provides means for performing remote reads. Upon receipt of such a message, the home
node will request update messages from all blocks that currently cache the requested block

and merge all these nodes. After this it will forward the requested block. By updating rather

63

than invalidating remote copies, we allow multiple processes to access the same data block
for read operations. These messages should be used with data that presents poor locality of

reference or to achieve a sequentially consistent program. These actions are shown in

Figure 28.

Discrete Time Line.

Time Requesting Node Home Node Copyset Nodes Lock Owner

. Bypass Read:
Bypass Read (ddress, Length)

-

—— If (Copyset == Null)
.Forward the value.

T else

. Request updates

from all copyset

elements.
Send_Upda#e (Block_Id) -

_

| ¥ data block is clean
reply with a CLEAN
message.

—— else if dirty

. Prepare the diff
for the given block
and forward it.*

Update / CLEAN Messages

A

. Merge all modifications
performed on the block.
. Forward the requested
Data Value to the reader.

Read Reply (Value(s)).

. Read the received value.

Note: With small modifications it is possible to return the requested object only, instead of the diff for the whole page.

Figure 28: Bypass-Read Messages.

(2) Bypass-Write Messages: Once a bypass-write message is
received the home node should “invalidate” all remote copies of the given block. Then the
Home node should merge all received updates and perform the write operation. These

actions are described in Figure 29.

Discrete Time Line.

Time Requesting Node Home Node Copyset Nodes Lock Owner

Bypass Write JAddress, Length)

[If (Copyset == Null)
. Write the value.

else
. send Invalidates to
all copyset elements

Invalidate (Bjock_Id)

-
_—

—1— If data block is clean
. Reply with a CLEAN
message.

. Invalidate the local
copy.*

|—— else if block is dirty

. Prepare the diff
for the given block
and forward it.

. Invalidate the local

copy.*

CLEAN / Update Messages

3

-Merge all modifications
performed on the bloc)

. Perform the write
operation.

y (Written).

R

n
=

-l
-l

NOTE: The reason for the use of Invalidate messages is to force processors to retrieve the most recently data value. Therefore we
can enforce that the “appropriate” use of “Bypass Cache” ages is seq As can be observed for the

“Bypass_ Read” message we do not require that the local copies to be invalidated, since we adopt the MRSW coherence
protocol.

tially ist:

Figure 29: Bypass-write message.

c. Synchronization Operations

We rely on synchronization operations to enforce consistency among
multiple threads. Therefore, any data access that may result on data race conditions requires
the use of explicit synchronization operations. For this purpose we provide two basic
synchronization mechanisms: Locks and Barriers. The actions for each mechanism are
described in the following figures. We use diffs to minimize the effect of network latency
(by reducing the message size) and for correctness [K95]. Diffs are obtained by creating a

copy of the original block (a twin copy) before a node tries to write into it. At the time of a

65

release/barrier call operation the differences between the twin copy and the original block

are inserted on the diff. This action is summarized in Figure 30.

Protection Fault _ _ Invalidate/ Encode
Create Twin | Relegse_Lock changes
Page Page Barrier call
set as
read
only
Mark
page as T
writable B -. L values

Figure 30: Diffs creation process.

d. Partial Ordering Definitions

In order to define a partial order between multiple intervals we need to
enforce the requirements established in [AH90] for the relation happens-before. The
requirements for this relation can be described as follows:

« If a; and a, are accesses on the same processor, and a; occurs before a, in
program order, then a; happens-before a.

* If a; is a release on processor p;, and a, is an acquire on the same memory
location on processor p,, and a, returns the value written by a;, then a; happens-
before a;.

» If a; happens-before a, and a, happens-before a3, then a; happens-before a;.
[KCZ92].

Each node maps to an index in the Vector Timestamp, therefore, the logical
clock of node; maps into index “i* of the corresponding Vector Timestamp. The happens-
before relation can be enforced through the following criteria:

* At an acquire_lock the requesting node sends the vector timestamp of
the last release. The lock owner, in turn, will send all write-notices that
were performed after the received Vector Timestamp or that are

66

concurrent to the received vector timestamp. The lock owner should also
release the “diffs” of the shared objects that it might have modified.

* Once the lock is acquired the new lock owner will update the blocks for
which it received the diffs and invalidate the ones for which write-notices
were received, but no “diffs”.

* The lock owner will update its Vector Timestamp, by incrementing its
logical clock and replacing it on the received Timestamp.

The rules for updating the Vector Timestamps are as follows:

* Rule 1: Clock C; is incremented between any two successive events in
process P;, such that C; [i] = C; [i] + 1;

* Rule 2: If event “a” is the sending of a message “m” by process P;, then
“m’” has a Vector Timestamp VC = C; (a) (using rule 1). When process P;
receives the message it updates its Vector Clock to:

Vk, Cj = max(Cj[k] VT [k])

» where C; (a) corresponds to the Vector Timestamp to any event a at

process i. For our approach we consider as conspicuous events only the
operations that result on the issue of “diffs” (release locks, barrier calls,
and invalidates).

The example of Figure 31 clarifies this issue. In this example three
processes, Py, P, and P; are requesting the same write-lock. At each acquire that is granted
the Jock owner will update its own VC and forward the lock with the corresponding write-
notices and updates that are larger than the received VC. The acquirer should, in turn,
update its own logical clock.

Based on the above rules we can state that “a happen-before-1 b” if and only if
VC(a) < VC(b), otherwise they are said to be concurrent. The definitions below describe
when VC(a) is less than VC (b):
+ Not equal:
VC, #VC, & Hi,(vC,[i] #VC, [i])
» Less than or equal:

VC, <VC, & Vi,(Ve, 11 SVC, [i])

67

e Less than:

VC <VC, & (vca < vcb) A (vca¢ VCb)

+ Concurrent events:

ve Ilve, < —1(Ve, < vcb) A ﬁ(Ve, < VCa)
p; 1000 [0,1,0] (01,01 {1,1,0] (1,211
ell =
Acq_Lock Rel_lock Rel_lock Acq_Lock Rel Jock
P2 el [0,1,0] [1,1,1] 2
AR 21 >
Acq_Lock
Acq Lock Rel_lock
P3 e31 _
[0,0,0] [1,1,0] [1,1,1] o

Global Time

f

event e21: will forward the write-notices performed by process P2 and the corresponding diffs.

event ell: will forward to P3 two write-notices [0,1,0] and [1,1,0] and the diffs that corres -
pond to event el1.

event e31: will forward to P2 two write-notices [1,1,0] and [1,1,1] and the diffs that corres-
pond to event ell.

event e22: will forward to P1 two write-notices [1,1,1] and [1,2,1] and the diffs that corres-
pond to event e22.

Note: At the release time the lock owner should send the diffs and write-notices that are larger
than the corresponding received Vector Timestamp.

Figure 31: Vector Clock implementation.

e. Read and Write Locks

As mentioned before, we introduce two types of locks: Read and Write
locks. “Lock ownership” will only change when a lock is acquired for “writing”. When a
lock is acquired for reading, the current lock owner should introduce the requester “id” on
the lock copyset and forward the write-notices and updates (Figure 32). The lock acquirer
should, in turn, perform the updates to the local pages and invalidate all pages for which

write-notices and no diffs were received (Figure 32). At the time of a lock release the reader

638

should report to the lock owner (Figure 33). The lock owner should, in turn, upon receipt
of the release message remove the node from the list of readers. A lock should be
considered “WRITE-AVAILABLE” if and only if the list of readers is empty. A lock should
be considered “READ-AVAILABLE” if and only if the lock owner is not currently holding
it. By adopting this policy we allow multiple readers to concurrently access a critical
section, but a unique writer can be within a critical section at a time.

When a write-lock is acquired (Figure 32), the lock owner will forward to
the new acquirer the set of write-notices, the diffs and the queue of processes waiting for
the lock (if any). Once the lock acquired message arrives, the new owner will execute the
same actions described for a read-lock. When a release on a write-lock is performed the
new acquirer should check the lock queue. If there is any process waiting for the lock it
should create the diffs for all pages marked as dirty and forward them to the requester. As
mentioned before, if the lock is being acquired for write, the ownership is altered, otherwise
the process maintains the lock ownership (read locks) (Figure 33).

To enforce consistency, the node that is acquiring a lock must be aware of
all modifications introduced on the data protected by the synchronization variable. We
solve this problem by adopting the same approach as on Treadmarks [ACDB94] by
forwarding the write-notices performed on the blocks. A write-notice is an indication that
a page has been modified during a particular interval, without specifying the actual
modifications. But, an acquiring node does not need to be aware of all write notices. An
acquire operation should only receive the set of write notices that were performed by other
nodes after its last release operation. This requirement introduces the notion of enforcing a
logical time so that we can achieve a partial ordering of events. This issue is addressed

through the use of vector timestamps as proposed on [KCZ92].

69

Time
0

Discrete Time Line.

Requesting Node Home Node Other Nodes Lock Owner
. Acquire Write- Lock:
. Locate the “probable”
lock owner.
.Send an Acquire_Lock
message.
Acquire_Lock (Lock_Id, WRATE, Vector Timestamp) -
fet If Lock_Owner
|—If Lockld == FREE
. Send the set of
‘“write-notices”
which are greater
than the received
Vector Timestamp
and the updates
for the blocks which
were locally written.
. Update the Lock
owner to the new
owner
If Lock_Id is not Free
. Insert the requester
and the Vector Time
stamp on the queue
for that lock.
> Lock_Granted (Write_Noticeg*, Updates, WRITE, Lock Q
le. If not Lock_Owner
" . Forward the request
. Update Lock ownership q
to the current Node ID ::;:':rmx‘ probable
. Update all blocks for de Id.Lock
which updates were Forward Req (Node Id,Lock 1d,
issued. Timestamp).
If Lock_Owner
. Invalidate all blocks o

for which write notices
and no updates were
received (this will force
requests to be done on
demand. So that only the
blocks that are needed
are requested).

Requs

st_Update (Block_Id).

. Process Request.

. Else
. Forward Request to
current owner.

o
Lol

Note: 1- The Write-Notices consist of the triple (Block_Id, Timestamp, Last Writer_Id). If two processes modify the same block
their changes should be merged into a single update block and the write_notice triple should be updated to both the

ID and Timestamp of the last modifier. If the size of the update block gets larger than the block itself we should replace
the Update Block by the block with a special annotation.

2- For a pure software solution, invalidations can be handled by modifying the protection of the given data block.

During the invalidation process the block owner should be replaced by the corresponding last writer.

Figure 32: Synchronization event: acquiring a Write-Lock.

70

Discrete Time Line.

Requesting Node Home Node Other Nodes Lock Owner
. Acquire Read-Lock:
. Locate the “probable”
lock owner.
. Send an Acquire_Lock
message.
Acquire_Lock (Lock_Id, REAI), Vector Timestamp) .
— If Lock_Owner
....Jf Lockld == FREE
. Send the set of
“write-notices”
which are greater
than the received
Vector Timestamp
and the updates
for the blocks which
were locally written.
| If Lock_Id is not Free
. Insert the requester
and the Vector Time
stamp on the queue
for that lock.
» Lock_Granted (Write_Notices*} Updates, READ).
| else If not Lock_Owner
- Update the Lock Owner . Forward the request
to the current owner. to the next probable
owner.
. Update all blocks for e
which updates were Forward_R}q| (Node_Id,Lock_Id,
issued. Timestamp).
. Invalidate all blocks
for which write notices
and no updates were
received (this will force
requests to be done on
demand. So that only the
blocks that are needed
are requested).
Requgst_Update (Block_Id).

Note: 1- The Write-Notices consist of the triple (Block_Id, Timestamp, Last_Writer_Id). If two processes modify the same block
their changes should be merged into a single update block and the write_notice triple should be modified to both the
ID and Timestamp of the last modifier. If the size of the update block gets larger than the block itself we should replace

the Update Block by the block with a special annotation.

2- For a pure software solution, invalidations can be handled by modifying the protection of the given data block.
d by the corresponding last writer.

During the invalidation process the block owner sh

id be r r.

Figure 33: Synchronization event: acquiring a Read-Lock.

Tim
0

Requesting Node, Home Node

Lock_Granted (Write_Noti|

Discrete Time Line.

Write Nodes

res*, Updates, READ).

Lock Owner

Release Lock

For each block marked
as dirty.

« Create diff

Blocks for all
blocks marked as
dirty.

. Insert the new
write_notice in the
list for the Lock_Id.

— If Lock_Id. Queue /= empty

While next
lock_request == READ &&
LockID == READ_FREE d(

. Send a lock granted
message.
. Remove the requesting
node from the lock queu
- Insert the Node_Id into
the Readers-List.

. If Lock_Type == READ

. Update the pages for which
write-notices were received
and update the Vector
Timestamp.

« Perform all Computations

. Release the lock -> send a
ge to the requesting

node,

Lock Release (Node 1d);

Lock JGranted (Write_Notices*, Updates, WRITE, Lock Queue).

. Remove Nodeld from list of
readers for that lock.
(readers_List==empty) set
Set LockID = WRITE-FREE
f next lock_request==WRITE
& & LockID== WRITE-FREE
. Send a lock granted
message to the next
acquirer Node on the
queue,

. Set the lock owner
to the new acquirer.

vl
| else o
Perform the same actions

specified for the acquire_
lock.

Note: The update for the write-notice will consist of updating the Timestamp with the current one and by replacing the
last writer by the current Node_Id. Therefore, the last process that writes into a data block will hold the write-notice.

Figure 34: Synchronization event: performing a lock release.

72

J. Barrier Call

Barrier synchronization primitives fulfill two distinct purposes:
synchronization and consistency. Its use allows us to evict the dirty blocks to their
corresponding Home nodes, forcing the global memory to enter in a consistent state. For
this purpose we allow the user to specify the data set that should be flushed to its
corresponding home node. If the barrier’s purpose is to perform global data coherence, all
dirty blocks should be flushed to their corresponding home nodes. We name this type of
barrier primitive as a “Converge Barrier” and it should be explicitly used whenever
“global memory” must enter in a consistent state. If the barrier is a “local barrier” only the
data specified at its creation should be flushed.

In our protocol the barrier primitives are designed adopting a centralized
approach. A barrier call should be executed in two steps. On the first step each node will
send their updates to the corresponding home nodes and invalidate its local copies. Upon
completion of this initial step the process should perform a call to the designated barrier
manager. The barrier manager, in turn, monitors the number of processes that have
executed a barrier call. When this number is equivalent to the number of registered
processes the manager multicasts a “CROSS_BARRIER” message. Upon reception of such
message each process should wake-up.

When the home node receives the updates it is possible that two
modifications to the same location are received (only if the data is associated to a lock). For
this purpose the relations happens-before should hold, otherwise, concurrent accesses are
performed to the same memory location, resulting on a nondeterministic result. The rules
for merging diff's can be summarized as follows:

« If the vector timestamp of the received diff is larger than the original one
the diffs are applied to the block even if the corresponding bits on the
bitmask are already set.

» If the vector timestamp of the received diff is smaller than the initial one
then the received diff is discarded.

« If the vector timestamp is concurrent with the Vector Timestamps

73

Time

already used, then the diff is applied to the data block if and only if no two
diffs modify the same location, otherwise an error condition shall be
raised. This feature will not prevent concurrent writes to the same
memory location, but will detect them during runtime.

Figure 35 illustrates a barrier call execution.

Discrete Time Line.

to their corresponding
home nodes send the
barrier message to the
root node.

Requesting Node Home Nodes
Barrier_Call (Barrier_ID);
. Compute the updates
of all data blocks that are
marked as dirty and
forward them to their
corresponding Home
Nodes.
. Invalidate all data
blocks associated with
the Barrier.
Update_Messages
—-
.Set S-bit=1.
« Merge all incoming updates.
. Decrement the Counter.
. When all nodes that cache a copy
of that block have flushed the
given block Set S-bit = 0.*
- After all modified . Remove the process from the list
data has been flushed

of nodes that cache the given
blocks.

Barrier_Call (Barrier_Id)

Barrier Manager

. Wait until a barrier
crossed message is
received.

-«

Cross_Barrier (Barrier_Id).

>

For each Barrier call received

increment the counter, until the

counter = number of nodes.

. When counter = number of
nodes send a barrier crossed
call.

. Proceed until a next
barrier call is
performed.

- Reset the local counter to 1.

Note: This condition is detected when Counter == 0.

Figure 35: Synchronization event: barrier call.

74

G. PUTTING IT ALL TOGETHER

We use a couple of examples to clarify the differences between Data Merging and
Lazy Data Merging. The first set of examples describe a more synchronization intensive
problem, in which we describe the actions that are adopted by both DM and LDM protocols
and provide a qualitative analysis of the communication costs involved.

For uniformity, the data distribution described in Figure 36 is adopted by all

examples.

1. Distributed Data Base Problem

Assume that each node needs to lock the data base record before accessing its fields.

The problem can be summarized as follows:

While not done loop
acquire lock (lock_id)
perform_modifications.
release_lock (lock_id)

end loop.

For this type of problem our approach should perform better than Data Merging
since each release operation will require that all data associated with the lock to be flushed
to the corresponding GMUSs.

In our approach the data will be released only at the time of an acquire and only to
the node which is requesting the lock. The releasing node should, in turn, send all
modifications (write-notices) that have happened after the vector timestamp received from
the requester. As before, we also optimize by sending only updates (diffs), instead of the
entire data block. The use of a hybrid coherence protocol will reduce the amount of
communication since the new acquirer will be able to update all blocks for which the last
releaser has introduced modifications.

To better describe the actions that are taken by both protocols under the presence of

synchronization operations we use the code example below.

75

Processor 1: Processor 2:

Acq_Lock (LockID) Acq_Lock (LockID)
A=5;- A=10;
Release_Lock (LockiD); Release_Lock (LocklID);

The next two subsections describe the interactions between the multiple DSM
system components for the example described above, under both the DM and LDM

protocols.

a. Data Merging

An acquire lock for the DM protocol would require a larger number of
messages for performing a lock operation. Locking each individual data block requires that
all remote copies should be invalidated before the lock could be granted. For the original

approach an invalidate message should be multicasted to the entire data block copyset.

ILock1t

Block 5

Regions managed by GMU/Node 1.
Regions managed by GMU/Node 2

Figure 36: Data distribution across the blocks.

Each node should reply by flushing the block, if dirty, or by sending a clean
message in otherwise. After the block is merged at the GMU, the GMU forwards the block
to the lock requester and sets the S-bit to one to ensure that new requests are put at the

Suspend Queue until the lock is released.

76

At the time of a lock release, the lock owner should flush the page to the
corresponding GMU. The GMU should decrement the counter and reset the S-bit to zero.
The changes are inserted into the corresponding data block and the bitmask is then cleared.

This sequence of actions are described in Figure 37.

Discrete Time Line.
Time Node 1 GMU 1/2 Node 2
Acquire Lock (1).

- Request block 2 for
locking mode. equest Block |2, Lock).

>
—I:llfs-bit block 2 == 0 then Acquire_Lock (1).

= if counter == 0 set S-bit = 1
else invalidate remote
cofies merge then and
Set S-bit =

|_else insert node id on Suspend_Queue.
Block]?2

Request_Block (2, Lock).

es, merfe them and

. -

If S-bit block 2 == 0 then

if counter == 0 set S-bit = 1
else invalidate remote
copies, |

Set S-bit =

else
—| . insert node id on Suspend_Queue.

Node 2 inserted on the suspend

Release Lock (1) Queue on GMU 1.

Flush block 2

>

. Merge the data block 2
set S-bit =0, Counter = 0
« Verify requests on the suspend
ueue.

request is Lock Request,
act as normal lock requests.
Block 2
—
Reidise Lock (1
Flush blocks2. elease_Loc ()'

- Merge the data block 2
set S-bit = 0, Counter = 0
. Verify requests on the suspend
uetie.
. If request is Lock Request,
act as normal lock requests.

Figure 37: Data Merging.

b. Lazy Data Merging

Now we describe the actions performed by LDM for the same code example

of Figure 36. In LDM each lock operation requires a smaller number of messages by

77

avoiding the issue of multiple invalidate messages, receiving their changes and forwarding
the updated block to the acquirer. LDM is also expected to reduce the average message size
by forwarding diffs to the next acquirer instead of the entire page.

A more generic example would suffice to give a quantitative view of the
number of messages that each approach would require. Assuming that “n” nodes cache an
arbitrary page and Process 1 performs a lock request. On the DM, the number of messages

for each block that may need to be issued would be:

(n invalidate messages + n update messages + lock granted)

For “k” blocks this amount should be multiplied by k.
For the LDM approach the number of messages would be considerably

reduced (for the worst case) to:

(n acquire lock messages + lock granted message)

We describe the actions that are undertaken by both lock owner and requester in

Figure 38.

2. Lazy Data Merging: Read and Write Locks

One of the extensions that LDM protocol introduces is the use of read and write
locks. Lock ownership will only be modified when a lock is acquired for writing. Our
locking semantics allow, at any time, multiple readers, but a single writer to access the
critical section they protect. The example of Figure 39 illustrates the actions that should be

taken for both read and write locks for the program listed below.

Processor 1: Processor 2:

Acq_Write_Lock (1) Acq_Read_Lock (1)
A=A+1; D=A+1;

Release_Lock (1); Release_L.ock (1);

78

Time

Release_Lock (1)

Node 1

Acquire_Lock_Write (1),

Acquire Loc]

Discrete Time Line.

Root

(1, WRITE).

Lock_Granted

e
1, No-Write-Notices, No-Wait).

Request_Block (Block 2).

Node 2

-

Block (BLOCK2, BLOCK2_DIFF);

S-bit block 2 == 0 then
. Insert Node 1 on the block
copyset.
. Send the block to the requesting
node.

. Update the received data block

. Mark the block as dirty.

. Create the twin copy.

. Change the protection to read-
write.

. Perform the write A = 5.

Forward_L

Acqui

Acquire_Lock_Write (1).
fe_Lock (1, WRITE, ve2).

Lock owner = Node 1. Forward
the request to nodel.

bck_Req (1, WRITE, VC 2, Node2)

. Insert th‘elock request on the
lock queue
(Nede 2, VC2, WRITE).

. Update the local Vector
Timestamp.

. Forward to P2 the set of
write-notices which VC1 are
larger than VC2.

. Create the diff for block 2.

. Send the diff for block 2.

. Move the lock owner to
Node 2.

Lock_Granted

(Write_Notices, Diffs, No-Lock-Request|

Pending).
| 3
. Update the lock ownership to
Node 2.

. Update the Vector Timestamp.

. Update the blocks for which diffs
were received.

. Invalidate blocks for which write-
notices, but no diffs were received.

A =6;

. Mark the block as dirty.
. Create the twin copy.

. Change the protection to read-
write.
. Perform the write A = 6.

Release_Lock (1)

. Update the lacal Vector
Timestamp (VC2).

Figure 38: Lazy Data Merging.

79

Another point that should be made when comparing LDM and DM is the message
size and the number of page requests that should be taken whenever a lock operation is
performed. Assuming that the number of writes is equivalent to the number of reads to a
shared page, we can assume that the average message size can be nearly 50% smaller than
the message size on DM. This number can be significantly smaller depending on the ratio
of reads/writes. If this ratio is relatively large (i.e., one write for the entire page) the gain
becomes significant. On the other hand if the ratio is small (i.e., every word is written into)
then the entire page is forwarded, resulting in the same performance of DM.

The number of page requests will also be an issue. An acquire lock operation DM
invalidates all cached pages, forcing new page requests for every page even if a small
portion of the page is being concurrently accessed. In contrast, LDM does not invalidate
any remote pages. It is assumed that before writing into a shared value, the programmer
stipulates an appropriate synchronization operation. Therefore, the number of page
requests is significantly reduced. The Hybrid coherence protocol should only locally

invalidate pages for which it received a write-notice but no update messages.

3. Data Merging and Lazy Data Merging Barrier Call

As mentioned before, barriers have the property of enforcing consistency of the
entire global memory or for designated portions of it depending on whether the barrier is
of a converge type or not. The approach adopted for barriers requires that pages associated
with a barrier object should be locally invalidated and, in most cases, it should have a
slightly worse performance than DM. LDM delays sending all diffs to the home nodes until
the barrier call (Figure 40b). In contrast, DM flushes the dirty pages to the corresponding
GMU whenever a page should be replaced. DM distributes the communication during the
entire computation, but it requires system support for enforcing that pages are redirected to

the corresponding GMU (Figure 40a). The figure below compares the two approaches.

80

Discrete Time Line.

Time Node 1 Root Node 2
Acquire_Lock_Write (1)

Acquire Lock (1, WRITE).

-
Lock_Granted [1, No-Write-Notices, No-Wait).

A=A+ 1 Request_Block (Block 2).
P
S-bit block 2 == 0 then
- Insert Node 1 on the block 2
copyset.
. Send the block to the requesting
- Block (BLOCK2, BLOCK2_DIFF); node.
Acquire Lock Write (1).
. Update the received data block q - - ()
« Mark the block as dirty. Acquife Lock (1, READ, VC 2).
. Create the twin copy. - =
. Change the protection to read- Lock owner = Node 1. Forward
write. the request to nodel.
. Perform the write A= A + 1.
- Forward_Lgck_Req (1, READ, VC 2, Node2)
. Insert the lock request on the
lock queue
(Node 2, VC2, READ).
Release_Lock (1)
. Update the local Vector
Timestamp.
. Forward to P2 the set of
write-notices which VC1 are
larger than VC2.
. Create the diff for block 2.
. Send the diff for block 2.
. Insert Node 2 on the lock set.
Lock_Granted (Write_Notices, Diffs, Nulf).
. Update the lock ownership to
Node 1.

. Update the Vector Timestamp.

. Update the blocks for which diffs
‘were received.

. Invalidate blocks for which write-

Request_Block (Block 3). notices, but no diffs were received.

-
. Insert Node 1 on the block 3

copyset. D= A+ l;
- Send the block to the requesting

node. Block (BLOCK3, BLOCK3_DIFF);

-

. Mark the block as dirty.

. Create the twin copy.

. Change the protection to read-
write.

. Perform the write D= A + 1;.

Release_Lock (1)

. Update the local Vector
Timestamp.

. Send a release message to the lock
owner.

Release_Read_Lock (1).
-

. Remove Node 2 from the List of
readers.

Figure 39: Lazy Data Merging: read and write locks.

81

Flush Rages
PE 1 Replace page 1 Replace page 2 3 and

\ Barrier // Release
GMU/ Merge Merge Merge Barrier

Manager page I pageZ page2 Merg >
Barrier Release

PE 2 Barrier
Barrier Call’ ~ ~ -
Replace page 2 (Flusgrpages 3 and 4)
(a) Data Merging
Node 1 Barrier Call

Diffs of\\ Diffs o
ome B8% 'y \paget
ode 1 . ge >
[N
gg‘e% Merge {}/Ilﬁ.rbge >

/ Barrier Manager Diffs of ds
B3’ /D g
Node 2 gng 2 :

(b) Lazy Data Merging

Figure 40: Comparison of DM and LDM during a barrier call.

As can be observed, DM performs slightly better than LDM, by reducing the
delay of a barrier operation. To minimize this problem we use diffs instead of flushing the
entire data block.

Figure 41 describes the execution of the program below. The node assigned
as Root corresponds to the barrier manager and should be generally the node on which the

system is being initiated.

Processor 1: Processor 2:
C=C+1; D=D+1;
Barrier (1); Barrier (1);

82

Time
[}

Node 1

C=C+1;

. S-bit block 2 == 0 then

. Insert Node 1 on the block 3
copyset.

. Mark the block as dirty.
. Create the twin coix
. Change the protection to read-
write.
. Perform the write C=C + 1.

-€

Discrete Time Line.
Root

Request_Block (Block 3).

Node 2

D=D+1;

. Generate a SISEGV signal
(Inmalli)the rotectlon of all
E{ages is
ash into the apfroprlate hom
node ==> N
. Send a request block number 3]
to node 1.

. Insert Node 2 on the block 3

. Sent{ the block to the requesting
node.

Block (BLOCKS3, BLOCK3_DIFF);

Barrier (1);

l‘J] date the Vector Timestamp;

éreate the diffs to block 3.

. Update the home node:
Remove Node 1 from Block 3
Copyset.

. Change the page protection to
Protection_None (this action

is equlvalel'ft to invalidating
. Insertaﬁle diffs on the page.

. Send a barrier message to the
barrier Manager.

Barrier (Node 1, Barrier 1).

-€

.Update the counter for barrier 1.

counter = 0
- Send a Transpose_Barrier
Message to all nodes.

else

Reply Wait_at_Barrier.

Wait_at_Bprrier

-

Update_Block (3, VC 2, Diff).

4>
. Mark the block as dirty.
« Create the twin copy.
. Change the protection to read-

. Perform the write D=D + 1,
Barrier (1);

. Create the diffs for Block 3.

. Update the Vector Timestamp

.Send diffs and VC to the Hom
node.

. Invalidate local copy of block 3]

P{lchanﬁmﬁ&rotectwn to

. YC 2 is concurrent to VC 1.
If Bitmask and diff write into

the same location
then error.

else
update Block 3. For this case

D will be equal to the new

value.

-¢

Cross_Barrier

@.

Barrier (Noﬁe 2, Barrier 1);

. Counter = 0.
Send a Cross_Barrier message
to nodes 1 and 2.

. Reset the Counter to 2.

Cross_Barrier (1).

1

Figure 41: Lazy Data Merging: barrier call.

83

84

V. EUREKA: A “LAZY DATA MERGING” IMPLEMENTATION

In this chapter we describe the design of “Eureka”, a prototype DSM system that
provides a software implementation of the LDM consistency model. Portability and
efficiency are our major goals. For portability we use regular Unix BSD 4.3™ system calls
(mmap, mprotect, etc., that are wrapped by C++ class definitions). For efficiency we should
build the system on a multithreaded environment using signal handlers for detecting both
page faults (detected by catching SIGSEGV signals) and received messages (detected by
catching SIGIO/SIGURG signals).

In Section A we list the major system components. Section B summarizes the
system runtime environment, by exemplifying the interactions that should be undertaken
by our DSM system. Section C outlines some implementation details by presenting extracts
from the actual system source code. By doing so, we hope to clarify the complexity that is

involved in building such systems.

A. DSM SYSTEM ORGANIZATION

This section describes the organization of the “Eureka” DSM system. Eureka is

composed of two types of entities: objects and threads. The objects are responsible for

managing a specific data structure and are considered as “reactive” entities, that is: they
respond to actions by updating their internal state and/or by providing replies to data
requests. Objects can also act upon other objects on behalf of an initial thread request.

Threads are “active” elements that make use of object services.

1. Objects

There are four major objects that should be active during the system lifetime:

» Synchronization Directory: this object is responsible for maintaining the state
of each individual synchronization mechanism and for providing the interfaces
that allow a computing thread to perform the necessary synchronization
operations.

1. Reactive objects are objects that take actions upon the reception of an external stimulus.

85

+ Page Directory: this object maintains the state of each page that is currently
mapped into the local memory. This directory accumulates the roles of managing
local and non-local pages. It provides interfaces for both the Synchronization
Directory and to the DSM thread.

« Suspend Queue: this object manages the insertion and removal of pending
page requests. It provides interfaces that are accessed by the timer and by the
DSM threads.

» Process Table: this object is responsible for storing the addresses of all nodes
that integrate the workstation cluster. The process table involves muitiple sub-
directories. The driven reason is that the system is implemented on a
multithreaded environment and more than one thread may issue messages.
Therefore, we need to maintain the state not only for remote processes but also
for the local threads.

The following subsections will describe in more detail the interfaces that should be

provided for these objects.

2. Local Threads

There should be at least three active local threads at any time:

o Computing Thread: this thread embodies the user application. For
synchronization with the other remote computing threads we introduce
synchronization primitives (locks and barriers). In practice, these
synchronization operations require access to the methods provided by the
“Synchronization Directory”.

» DSM thread: this thread is responsible for managing local/remote block
requests. It also manages the creation of “diffs” and the merging of update data
that is received from other nodes. In summary, this thread processes all actions
that are related to memory management.

« Timer thread: the unique role of this thread is to periodically scan the suspend
queue. If there are no processes waiting on the suspend queue, the timer thread
should yield the execution to another thread, otherwise the timer thread should
scan the suspend queue and issue timeout messages which are on the queue
longer than the specified threshold value if there are requests pending.

There should be two distinct signal handlers:

s Communication handler (SIGIO/SIGURG signals); and
* Memory handler (handles SIGSEGYV signals).
The communication handler is responsible for handling all received messages.

Based on the type of operation of the incoming message it may be delivered to one of the

86

local threads or forwarded to another node. The memory handler, in turn, is responsible for
detecting page faults. The page faults can be caused by either page absence or by violating
the page protection. In case of protection violation the memory handler actions should vary
accordingly to the protocol that is currently in use. Page absences should be handled by
issuing a request to the appropriate “home” node.

These threads interact through global data structures and signals (SIGSEGYV for
page faults/protection violation and SIGIO for messages) that are issued during program

execution.

B. EUREKA RUNTIME ENVIRONMENT

This section describes the various actions that are undertaken by each one of the
distinct entities of the system. Figure 42 (Figure 25 on Chapter IV, section D) provides a

pictorial description of the subject.

Node 1

Local Blocks

o p— | Object
& I Di -2 Directory
Processing e
Thread - :
v 1 (GMC + LMC)
: Message Handler - '
Figure 42: Eureka Runtime Environment.
87

The Eureka DSM system during its execution can be in one of four states:

* System Initialization: when the threads, global objects and statically declared
data variables are initialized;

» System Execution: when the computing thread is forked;
* Data Gathering:when the results are collected;

+ System Termination:when the global data structures are deallocated and the
remote threads are terminated.

Section 1 describes the overall system activities giving an abstract view of the
system behavior during the four phases. The remaining sections will complement this

initial introduction with more detailed aspects of Eureka at each particular phase.

1. Eureka Execution Overview

The system session should be started by the user from one of the nodes specified at
the Erk.hosts file. The start-up routine will consist of the call to the macro Erk_Start (argc,
argv) from within the main routine which will, in turn, be responsible for the initialization
of the DSM threads on the various remote nodes. All global variables within the system
should be initialized within a function Erk Init (). This function will be called from the
Erk_Start () routine. After the initialization of the system’s global variables the Master
node will spawn the remaining DSM threads on each of the hosts defined on the Erk.hosts
file through the use of the “rsh” system call. Figure 43 describes the system initialization.

After all DSM threads have been created, the dispatcher node should initialize the
globally shared objects and synchronization variables. The main routine will then
synchronize all threads through the use of a barrier call, which has no data associated with
it, through the call “Erk_BarrierWait (Num Nodes, NO_DATA)” . This is a requirement for
initiating the dispatch of the computing thread on the remote nodes. Upon crossing the
barrier, the dispatcher should initiate the process of forking the computing threads,

initiating the execution phase.

88

Network

Figure 43: Eureka System Initialization.

The dynamic allocation/dealocation of shared memory as well as the management
of barrier primitives are centralized in the “dispatcher” node. The dispatcher should also
be designated as root for the lock variables. When all computing threads have terminated,
the global memory should be brought to a consistent state. This will be achieved by a call
to the barrier primitive “Erk_Converge”. This barrier call has the dual role of acting as a
control primitive, by synchronizing all processes, and of enforcing global memory
consistency, by flushing all dirty blocks to their corresponding home nodes. For blocks
which are clean the node should send a “CLEAN” message to the corresponding home
node.

The next phase consists of the “Data Gathering” phase and is performed solely by

the dispatcher. In it the system will present the final result through a GUI and/or by

89

redirecting the results to a file. The instrumentation phase can be performed concurrently
with computation by performing multiple Erk Converge calls. Although important for
real-time applications, for which intermediate states are as important as the final one the
overlap of Data Gathering tasks with computation may result on a significant loss in

performance. A sample main routine should have the following format:

main (argc, argv) // argv display the command line options

/I Initialize the Master and later on the Slaves remote threads.
Erk_Start (argc, argv);
/1 If the master initialize the Shared Objects and
//Synchronization primitives among the Servers.
/1 Initialize Shared Memory and Synchronization Primitives.
Erl_Init ();
if (CHILD)
return 1;

if (MASTER) {

// Fork remote computing threads on the other nodes

Erk_Spawn_Child (Computing thread);

Execute own local computing Thread;

/I Instrumentation phase:

Display Results;

{// Shutdown Remote threads

Erk_Shutdown ();

To minimize contention we adopt a “distributed/fixed” approach for partitioning
the shared data across the nodes. Therefore, each node is designated “home” for a set of
data blocks and becomes responsible for its management. The expected performance gain
by this approach was stated by Stumm in {SZ90]:

“....One potential problem with the central server is that it may become a
bottleneck, since it has to service the requests from all clients. To distribute the
server load the shared data can be distributed onto several servers. In that case,
clients must be able to locate the correct server for data access ”

........

90

2. Handlers Initialization

a. Communication Port and Communication Handler

The local port, remote port, and message objects are the three objects that
should be instantiated as soon as the Process Table is created. Their roles are to provide the
appropriate “UDP” communication channels that are required for the exchange of
messages between the system nodes. The port object provides means to send asynchronous
messages to a thread on a remote node. The message object is responsible for providing the
semantics (blocking and non-blocking) for sending and receiving messages and to maintain
storage for received messages. The remote port object temporarily stores data that describes
the source of a received message.

Each node should have a well known port number which is determined by
the local ProcessID. The ProcessID represents the order that the nodes were read from the
file “Erk.hosts” . The Dispatcher node will be assigned a well known port number (between
1024 and 5000) and all other ports should consist of adding the ProcessID to the initial port
number. By doing this we allow more than one process on a single node. If it is known that
no two processes will ever be assigned to the same node, then the port number can have an
arbitrary number greater than 1024.

Received messages are handled in an asynchronous way by defining the
appropriate signal handler for SIGIO signals and modifying the local port attributes through
the use of the “fcntl” system call with the flags “FASYNC | FNDELAY” . Similar to Quarks
[CKKD95], once a message is received it is inserted in the message list for the specific
thread, in the process subdirectory. If the message is a synchronous message, the thread that
is blocked should then be awakened and the corresponding actions (i.e. lock acquired, data
block granted, etc.) should be performed. If it is an asynchronous message (page request,
lock request, etc.), it should be handled by the “message handler” (i.e., forward of lock
requests, etc.) or delivered to the DSM thread (i.e., page requests, lock requests, updates,

etc.).

91

b. Memory Handler

The major role of the memory handler is to detect violations to specified
pages access rights. The following table describes the relation between the current page
protection value and the actions the memory handler will perform in the event of a

“SIGSEGV” signal.

Table 3: Page Protection Actions

Page Fault - perform a page request to the | PROT _READ

appropriate home node. Change the page
protection as soon as a page is received to
PROT READ.
PROT READ If the page is associated with a lock that | PROT READ /

was acquired for reading an error condi- | PROT WRITE or
tion is reached and the program should | generate an error
abort. Otherwise the protection is altered | condition.

to PROT_READ | PROT WRITE and the
appropriate actions should be taken to
mark the page as dirty and the creation of
its twin copy.

It is also possible to generate an invalid address. To deal with this particular
case the memory handler should verify if the corresponding address maps into a page that
has been inserted in the page table. If the page number is not valid then an error condition

should be raised.

3. Eureka Shared Data and Synchronization Objects Allocation

This section describes the actions that should be undertaken by the Eureka DSM
system for object allocation. This subject is divided into static/dynamic memory allocation

and creation of synchronization objects.

92

a. Static Memory Allocation

The allocation of statically defined shared objects is performed on each
individual node. This action should be carried out by the “Erk Init ()” routine. The
initialization of shared data is, consequently, performed on a distributed fashion. An image
of the shared virtual address space (VAS) is allocated for every process, however, each
node is responsible for the integrity of one portion of that space. For these portions we name
the node as “Home” for this pages.

Static memory allocation is performed at a higher level by the call to the
function Erk_ShMalloc (Var_name, sizeof (Object ID) * Number of objects). The
underlying system will, in turn, be responsible for allocating the appropriate data structures
that should maintain the state of each individual data block.

The allocation of a shared data object involves requests to the Page
Directory. The Page Directory’s role is to maintain the state of each individual page
mapped on the Node. Within each node, shared pages can be divided in two groups: global
pages and local pages. Global pages are the shared pages for which the local node is
designated as “Home” node and, therefore, is responsible for their management (i.e.
merging updates, monitoring the number of cached copies on remote nodes, allocation/
dealocation of bitmasks, storing the list of write-notices, controlling the S-bit, etc.). In a
page fault the page should be mapped to the corresponding Home node and perform the
request. On the other hand, local pages are acquired remotely from their corresponding
Home nodes and temporarily cached at the local process.

The actual allocation of the shared data will consist of two basic steps:

» Mapping the object into memory; and
+ Allocation of the Data structures that will manage the shared blocks.
The algorithm that describes this two steps can be summarized as below.

Erk_ShMalloc (Any_T * ObjectiD, int ObjectSize)

// Map the shared object into memory - by using mmap system call or
// shared memory allocation.

93

ObjectID = PageTable.Map_Object (ObjectSize).

// With the initial address and object size allocate the data structures
// that are needed for managing the pages. In accordance with the

// data partitioning policy, identify the pages that should be marked as
/1 “global” pages, and initialize the data structures that are required for
// its management.

PageTable.UpdatePageTable (ObjectiD, ObjectSize).

The description of the method Map_Object is described in section C. For the
method UpdatePageTable we provide the following algorithm:

UpdatePageTable (ObjectID, ObjectSize)
{

{/ Verify the number of pages that the object requires.
NumPages = ObjectSize / PageSize;

// For each page verify if the page is global - the node is the “Home”
// or if the page is local. For global pages it is necessary to allocate elements
// for providing control of the copyset elements.
for (| = 0 to NumPages -1) loop
if (IsGlobal (PagelD + PageSize * 1)) {
createControl (PagelD + PageSize * |, GLOBAL);

}

else
createControl (PagelD + PageSize * I, LOCAL);

In reality, both types of page objects (global and local) are constructed in a
similar way, but they behave differently. Global pages should allocate copyset lists and
perform the coherence operations on updates that are received from the copyset elements.

The major difference between this method and the one introduced by Munin
and later on by Quarks is that in these two DSM systems the allocation and initialization of
the shared data is performed at a single and predefined node. After the allocation, pages are
transferred to remote nodes on demand. This approach presents a relatively high startup
time, which can penalize short programs.

In Eureka we propose that the UNIX™ “fork” semantics to be followed by
performing the allocation of objects defined as shared in parallel. Therefore, when a remote

DSM thread is forked the corresponding shared address space is also allocated. The

94

reduction on the startup time will depend of the data partitioning algorithm that is provided.

In Section C we describe the implementation details for the above routines.

b. Dynamic Memory Allocation

For dynamic allocation of shared data we adopt a centralized approach.
Therefore, the dispatcher node is assigned the controller for dynamic data allocation and
deallocation. As in other implementations (Munin, Quarks, etc.) this problem is solved
through the use of “RPC” (Remote Procedure Call) style calls to the dispatcher. It is
required that the user provide the appropriate “stubs” for each method that is needed (e.g.,
allocation/deallocation, read and writing into the object). The operations that are
performed on these shared objects (i.e., Queues, Lists, etc.), should be generally be
mutually exclusive. For an appropriate result, the user might need to protect the critical

section of its code with locks.

c. Creation of Lock Objects

Locks are managed in a distributed fashion, using the distributed queue
algorithm suggested by Florin in [FBYRS88]. The requests for lock creation and
management should be performed within the “Erk_Init” routine. The global LockId will
correspond to the actual address of the synchronization object, that should be mapped in
global memory by using the “mmap” system call. Within the node context of a node the
LockID corresponds to its index on the Synchronization Directory. The Synchronization
Directory corresponds to a table in which the locks are stored. The constructor for each lock
object should include the initial lock owner (the Dispatcher) and the list of pages that are

associated with the lock. The algorithm for lock allocation is described below.

LockID SynchDirectory.CreateLock (ObjectID *ObjectinitAddr, int Offset,
int Size)
{

staticinti=0;

/1 If ObjectAddr == NULL the lock is a control lock, therefore, no
// data is associated with it. Otherwise, compute the pages that
// need to be verified at the time of a lock release.

95

If ((ObjectAddr = NULL) a (Size > 0)) {

// Based on the address build the list of pages that should be associated
// with the lock.
Page_List = Build_ListOfPages (ObjectinitAddr, Offset, Size);
/1 Create the new lock having the Dispatcher node as root.
Lock_List[i]=new Lock (Dispatcher, Page_List);

}

else
Lock_List[i] = new Lock (Dispatcher, NULL);
return Lock_List [i++]->LockID ();
}

The Synchronization Directory is, in essence, a lock table that provides the
appropriate mechanisms for allocating, deallocating, acquiring, and releasing of locks.
Upon its creation it needs the information of the address from the Page Directory, so that it

can request its services such as creation of diffs and update the pages’ Vector-Timestamp.

d. Creation of Barrier Synchronization Objects

The creation of barrier objects should be performed in two steps:

« Associate the barrier object with the shared pages that should be updated
at the time of a release.
* Register with the barrier manager (Dispatcher node).

Barrier calls can also be used solely for synchronization purposes. If that
happens barriers will not update global memory.

Barrier Converge primitives will require that each node traverse its
corresponding Page Table and forward the diffs for pages that are dirty to the
corresponding Home node, forcing global memory to enter in a consistent state. The
algorithm below describes these actions.

BarrierlD Erk_CreateBarrier (ObjectlD *ObjectinitAddr, int Offset,
int Size, int NumProcesses)
{

static inti=0;
/1 if ObjectAddr == NULL the Barrier is a control lock, therefore,
/I no data is associated with it. Otherwise, compute the pages that
// need to be verified at the time of a barrier_wait call.
If ((ObjectAddr = NULL) && (Size > 0)) {
Page_List = Build_ListOfPages (ObjectAddr, Offset, Size);
Barrier_List [i] = new Barrier (Dispatcher, Page_List, i);

96

Barrier_List [i] = Page_addr (Page_Table_addr);

else
Barrier_List [i] = new Barrier (Dispatcher, NULL, i);
return Barrier_List[i++]->RegisterBarrier(Thread!D,NumProcesses);

}

Although barriers are managed using a centralized approach, a regular barrier call
is processed in two steps. The first one consists of sending updates (diffs) to the
corresponding home nodes for pages that are dirty and CLEAN messages for those pages
which are clean. Once the first step is performed the Barrier Primitive will call the barrier

manager and wait until a transpose reply is received.

4. Execution Phase

In this section we describe the desired system behavior during the Execution Phase.
In Eureka data and synchronization management are closely related. Recall that for
correctness we rely on the appropriate use of synchronization primitives.

After the initialization of global data structures (i.e. Process Table, Synchronization
Directory, etc.) the computing thread is forked. At this point in time the system can be
viewed as three threads running concurrently (timer, DSM and computing threads) and
globally defined objects (Page Directory, Synchronization Directory, Process Table and
Communication objects) upon which they should act. The next paragraphs describe how
these threads and objects interact. We describe these interactions by listing the objects and
how each thread relates fo it. The algorithmic details are explained in Chapter IV (sub-

subsections ¢, d, e, and f of section E, subsection 2).

a. Suspend Queue

Both the Timer and DSM threads will act over the Suspend Queue. The
former by performing insertions and deletions of the IDs of processes which are waiting for

an arbitrary data block and the latter by verifying if a timeout has occurred.

97

b. Page Directory

The Page Directory object receives messages from the DSM and Timer
threads and eventually from the memory signal handler (SISEGV signal handler). It also
processes requests from the Synchronization Directory for creation of diffs. The DSM
thread will interact with the Page Directory whenever a data request/update message is
received. The actions for each one of these messages are described in Chapter IV.

Whenever a page fault occurs, the memory handler should take the actions
specified in Table 3. The signal handler should consult the Page Table in order to verify the
protection attribute of the faulty page. Depending on the protection attribute, it may be
needed to perform a page request to the home node. If the page is already in memory the
actions can be reduced to modification of its protection.

The interactions between the Timer thread and the Page Directory take place
whenever a timeout occurs. At this instant, the Timer should verify the copyset of processes
that currently cache a copy of that page and invalidate their pages. Once all updates have
been received and appropriately merged, the Counter for that page will equal 0 and the
Timer thread should be able to remove the ProcessID from the Suspend Queue and forward

the requested page.

c. Synchronization Directory and Page Table

The computing thread, Synchronization Directory, and Page Table should
interact whenever a synchronization operation is performed. At the time of an acquire_lock
operation a request should be issued to the Current Lock Owner. Upon the receipt of an
“acquire” message it will be followed by the set of write-notices as well as by the updates
that were issued by the last lock owner. The received write-notices should be appended/
coalesced to the existing set and the diffs should be inserted into memory. The pages for
which write-notices and no updates were received should be Invalidated (by setting their

protection to “PROT_NONE”) and they should be marked as pages that are associated with

98

a lock by inserting the identity (by inspecting the write-notice tuple) of the node which has
last performed a write operation into the page.

At the time of a release operation the Synchronization Directory should inspect the
lock queue for pending requests. If there are any, the Synchronization Directory should
request that the Page Table the creation of diffs for pages marked as dirty (only the pages
associated with the lock), and should also update the state of the write-notices for these
pages and then forward this information with the lock granted message and the list of
processes waiting for this lock.

Barrier calls should behave in a similar manner, except that all diffs and write-
notices that are associated with the barrier object are forwarded to the corresponding home
node and all data that is associated with the barrier should be locally invalidated.This will
ensure that values that are shared among multiple nodes will be updated after the barrier

have been “crossed”.

d. Sending | Receiving Messages

Messages are exchanged in Eureka for several different purposes and
multiple threads can issue a message. Therefore, when sending a message, it is not enough
to observe the IP address. We also need to specify to which remote thread this message
should be delivered. To fulfill this requirement some conventions were adopted. The first
one is how to specify the Thread ID. The underlying threads package (Cthreads) provides
a unique handle for each local thread. At the creation of any local thread this handle should
be inserted into the Local Process Table. This will be useful for providing joining/detaches
of threads. But what is really needed is a means for globally identifying each remote thread.
This will be achieved by combining the Global Process ID with the thread number. The
combination is performed as below:

ThreadlD = Global Process ID << 16 | LocalThreadID.

Therefore, the Local ThreadID for the DSM thread running at the Dispatcher

node will be the number 0, the Timer thread 1, and the computing thread 2. For the Process

99

1 the DSM thread will be the number 65536 and so on. For decoding the ThreadID we apply
the reverse process.

LocalThreadID = ThreadlD & 0000FFFF

By doing this the system can appropriately identify the source and
destination threads for each message. A Eureka’s typical message is composed by the fields
described in Figure 44. The destination and source ThreadID are necessary to identify the
threads within the context of a process. The Operation Code is used to identify the type of
message that is currently being used. The Size field specifies the size of the data part. The
Packet Number is necessary for messages that contain more than one datagram packet. The

message header size is 20 bytes.

4 bytes 4 bytes 4 bytes 4 bytes 2 bytes 2 bytes
Destination Source Operation Message Packet Size
ThreadID ThreadID Code Family | Number

Figure 44: Message header format.

One particular situation for the data field is the case in which the Operation
Code consists of an Update message. For this case the message data field may have one of
two formats. The first one consists of the diff bitmask and has a size of 128 bytes (Figure
45). Each bit maps to a word within the page. A bit set to one represents the word is dirty
and a “0” represents a clean word.

At runtime, whenever a message arrives at a node a “SIGIO” signal is
raised. The signal handler should then either post the message into the message list for the
appropriate local thread (DSM thread for page requests, updates, etc., compute thread for

Bypass-cache and synchronization messages), forward the message to another node (i.e.,

100

lock requests) or even discard the message and reply with an “/NVALID” message, if there

is no such thread on the node.

Encoded Diff

Figure 45: Diff message.

| Whenever a thread sends a synchronous message or is waiting for a message
to arrive (DSM thread), it should periodically peek on the message list. If the list is not
| empty it should handle the message, otherwise the given thread will yield the execution to

another thread. The C++ code below describes this actions:

Receive_Message (ThreadlD)

while (LocalProcessTable [ThreadID }->Messagel.ist.IsEmpty ())
cthread_yield ();
return LocalProcessTable [ThreadID J->Messagelist.GetMessage ();

}

e. Operation Codes

The operation codes are divided in four basic types:

+ Memory management requests;
* RPC calls;

+ Synchronization messages;

+ System control messages.

These operations are summarized in the following paragraphs.
Memory Management Messages:

*« REQUEST BLOCK: this type of message is sent to the home node of
the corresponding block. The message data field is inserted with the block

101

number.

* UPDATE_DIFF: this message will consist of an update message as the
result of a page flush or process termination.

* WAIT FOR_BLOCK: whenever a process poses a request and the
Suspend-Bit for that page is set at the home node it should reply with a
wait message such that a unit does not need to timeout and perform the
request again. This action should force the requesting thread to block and
wait until the reply arrives. The data field should contain the page number
for which the request was performed.

* BYPASS READ: this message should carry the address and size of the
data to be read.

» BYPASS READ REPLY: this message carries the size and the actual
data that has been read (the data is considered to be placed at a contiguous
address).

* BYPASS_WRITE: the data field contains the initial address, the number
of bytes to write and the actual data. When the operation is completed the
Home node should reply with a “DATA_WRITTEN” message.

* DATA WRITTEN: a reply from the Home node is issued when the
bypass_write operation is completed (when the remote write has been
performed).

* INVALIDATE BLOCK: whenever the timeout value expires the Timer
thread will issue a Flush_Block type message for the corresponding
block. Only the LOCAL processes with the corresponding block dirty will
reply with an Update_Block type message. The home node will, in turn,
update the corresponding blocks, set the S-bit to one, and decrement the
counter. This type of message has the same semantics of write invalidate
when used in combination with the Locking messages.

* CLEAN: the clean message is used to identify a page that is not dirty. Its
purpose is to remove the nodelD from the page copyset at the home node.

« WRITE_NOTICE: a list of write notices. They consist of the number of
write-notices plus the actual list of tuples “(BlockNumber, Vector
Timestamp, Last Writer ID)" .

RPC calls:

As mentioned before, we use a centralized algorithm for managing dynamic
memory. The dispatcher node should execute the stub function and return the reply to the
requesting node.

* RPC _CALL: the client node should pack the stub’s name and

102

arguments, if any, with this message.

*RPC_REPLY: consist of the reply form the server stub to the requested
method.

Synchronization Messages:

* ACQUIRE_LOCK: lock request performed by the source of the message
to the “probable” owner. The data field for this message will consist of
the LockID, if the lock should be acquired for write or reading and the
node’s current Vector Timestamp.

* LOCK_GRANTED: when the lock request was granted.

* LOCK_QUEUE: the list of nodes that are waiting for the lock. (Consist
of NodeID and Vector Timestamp).

* FORWARD _LOCK REQUEST: this message is sent whenever the
process is not the current lock owner. The lock request is forwarded to the
next current owner. The arguments for this message are the data field
from the original message as well as the NodelID of the requesting node.

* WAIT FOR_LOCK: reply issued by the lock owner when the lock
requested has been inserted on the lock queue.

» WAIT AT BARRIER: a barrier call, performed by the remote nodes.
The barrier manager should in turn decrement the counter and either reply
with a TRANSPOSE_BARRIER or BARRIER WAIT, depending if the
counter value equals O or not.

s BARRIER_WAIT: a reply from the barrier manager sent whenever the
counter value > 0.

* CROSS_BARRIER: issued by the manager to all processes registered at
the barrier waking then up.

» CONDITION_WAIT: call to a given condition variable. The callee
should block until the condition becomes true.

* WAIT_FOR_CONDITION: reply from the condition variable manager.
It means that the condition is false.

* CONDITION_SIGNAL: done by any thread informing that the condition
is now true.

* CONDITION_BROADCAST: wake-up all threads that are currently
waiting at the given condition signal.

System Control Messages:

+ ACK: issued whenever a reply is needed, but no action by the receiver
is needed.

103

* FORK_THREAD: fork a new remote thread at the destination node.
* SYSTEM_SHUTDOWN: terminate all remote operations.

* TERMINATED: the reply when the node is ready to terminate its
threads.

S. Data Gathering Phase

This phase is initiated after a call to a barrier converge primitive by all Eureka
nodes. The result of this call is that the global memory should enter in a consistent state.

Upon reception of a “CROSS_BARRIER” call the dispatcher node should start
collecting the necessary data. This task is performed by the underlying system, becoming
transparent to the user. The user is responsible for specifying the procedure that should be

run at the dispatcher node after the barrier_converge call.

6. Termination Phase

The termination phase is initiated by the dispatcher after the Data_Collection phase
and consists of a “SYSTEM_SHUTDOWN” message sent to all nodes, issued by the
Dispatcher node. Upon receipt of this message, each node should graciously terminate all
threads, deallocate its global objects and unmap the shared global memory. Finally, each
node replies with a TERMINATED message. When all nodes have terminated the

dispatcher will be ready to finish.

C. CODE EXAMPLES

This section describes the actual details for implementing the DSM system.

1. Creation of an UDP Port

The constructor for a local UDP Port object should be initialized with the host name

and the corresponding port number.

UDP_Port::UDP_Port (char *hostName, unsigned short Port)

{
localAddr.sin_family = AF_INET,;

104

/*
* Open an UDP socket.
*/
if ((sockfd = socket (localAddr.sin_family,
SOCK_DGRAM, 0)) <0){
printf ("Value of sin_family = %d \n", localAddr.sin_family);
perror ("Cannot allocate socket") ;
}
/*
* Now bind our local address so that the other processes
* can find us.
*/
bzero ((char *) &localAddr, sizeof (localAddr));
localAddr.sin_addr.s_addr = INADDR_ANY;
localAddr.sin_port = Port;

if (bind (sockfd, (struct sockaddr *) &localAddr, sizeof (localAddr)) < 0) {
printf ("Value of sockfd = %d\n", sockfd);
perror ("Cannot bind socket");

}

#ifdef DEBUG
printf ("Done with initialization of the UDP socket \n.");
#endif

}

To receive a message the node should perform a call to the method rcvMsg. This

call will be performed within the signal Handler for the SIGIO system call.
/*
* Receive a message from a remote node and returns the sender info plus a
* pointer to the buffer and the size of the message just received.
*/
int
UDP_Port::rcvMsg (RemotePort *From, char *msg, int maxLgth)
{
ints=0;
int rcvDatagramSize = 0;

/*

*If From is not a NULL pointer, the source address of the

* message is filled in. S is a value-result parameter,

* initialized to the size of the buffer associated with From,

*and modified on return to indicate the actual size of the
*address stored there. The length of the message is
*returned. If a message is too long to fit in the supplied

* buffer, excess bytes may be discarded depending on the type
* of socket the message is received from.

105

*/
s = sizeof (From->remoteAddr);

if ((rcvDatagramSize = recvfrom (sockfd, msg, maxLgth, 0,
(struct sockaddr *) &(From->remoteAddr), &s)) < 0)
{

perror("Error in Recvirom");
if (errno = EWOULDBLOCK)
{
perror("Error in Recvirom");

}

else
rcvDatagramSize = 0;
}

return rcvDatagramSize;

}

Asynchronous I/0
/*
* 1- Now we need to set the process ID to receive the SIGIO or SIGURG
* signals for the socket associated with fd.This is done with the
* command F_SETOWN. (S_SETOWN > 0 -> process ID and
* S_SETOWN < 0 -> process_Group ID).
* 2- Later on we need to set a flag for FASYNC (Signal process group when
* ready) and FNDELAY (Nonbiocking I/O). This is done with the command F_SETFL.
*/
if (fnctl (sockfd,F_SETOWN, getpid ()) < 0)
perror ("UNIX PORT F_SETOWN error");

if (fnctl (sockfd, F_SETFL, FNDELAY | FASYNC) < 0)
perror ("UNIX PORT F_SETFL error");

/*

2. DSM System Calls

Create a single logical address space:
/*
* A zero special file is a source of zeroed unnamed memory. This file is
* of infinite length. Mapping a zero special file creates a zero-initialized
* unnamed memory object of a length equal to the length of the mapping rounded

* up to the nearest page size as returned by getpagesize. Multiple processes

* can share such a zero special file object provided a common ancestor mapped
* the object MAP_SHARED.
¥/

106

|

if ((mapFD = open ("/dev/zero", O_RDWR, umask(0))) < 0)
printf ("Couldn't open the desired FD for mmap\n");

else {
if ((vitualBaseAddr= mmap (0, regionSize,
PROT_NONE, MAP_PRIVATE, mapFD, 0)) <0) {
perror ("Cannot Map the correct value™);
printf ("Couldn't allocate memory \n");
}
else {
matrixA = (my_type *) virtualBaseAddr;
printf (" address of matrixA = %lIu \naddress of virtualAddr = %lu",
matrixA, (long unsigned) virtualBaseAddr);

}

To modify its protection:

void
segv_handler (int sig, int code, struct sigcontext *context, char *addr)

{

int pageSize = getpagesize ();
int pageAlignedAddr;

splhigh (); // maximize the thread priority.
sigblock (sigsetmask (SIGSEGV)); // block SIGSEGV signals.

printf ("\n******* PAGE FAULT on Virtual address = %Iu \n\n",
(unsigned long) addr);
printf ("PAGE SIZE = %d \n", pageSize);

/*

* Page align the faulty address otherwise mprotect will refuse
* to change protection.

¥/

if ((pageAlignedAddr = (unsigned long) addr % pageSize) |= 0)
pageAlignedAddr = (unsigned long) addr - pageAlignedAddr;
else
pageAlignedAddr =(unsigned long) addr;

/*
* Now change the protection of the the given address so that | can write
* into it.
*
if (mprotect ((char *)pageAlignedAddr, pageSize,
PROT_READ | PROT_WRITE) < 0)
printf ("Setting an invalid address \n");

sigsetmask (0); // unblock all signals.

107

spllow (); // reduce the thread priority.

3. How to Present Debug Information

To be able to monitor a program running on multiple nodes we allow the display of
multiple windows at the dispatcher node through the use of the rsh and xterm system calls.

sprintf(forrsh, " %Ss%5%S8%S%5%5%0%S%$%S %S %8 %S %S",
"rsh ", hostAddress , " /usr/bin/X11/xterm -display ", masterAddress ":0.0",
" title Pid_", i"-", hostAddress, geom_string, " -e ", path,
"/matmult /users/work4/tavares/THESYS/WORK/result",
" Jusers/work4/tavares/THESYS/WORK/Erk.hosts &");
#ifdef DEBUG
printf("Rsh command: <%s>\n", forrsh);
#endif

/* Now execute the remote command */
system (forrsh);

108

|

VI. CONCLUSION

The introduction of fast networks (e.g. ATM standard) made both message passing and
shared memory systems feasible alternatives for solving computationally intensive
problems at a very low cost. They allow combining clusters of workstations into a single
abstraction. The major advantage of shared memory systems over their message passing
counterparts is that such systems relieve the programmer from the burden of worrying
about data movement, which for some applications can become a very complex task.

In this thesis we have performed a comprehensive description and analysis of existing
memory consistency models and DSM systems using representative examples of each
category (Chapters II and III).

Based on studying of existing DSM consistency models and their implementations, we
modified Data Merging to obtain a new protocol, “Lazy Data Merging”, which
incorporates features from both Lazy Release Consistency and Entry Consistency memory
models.

The analysis of multiple DSM systems implementations were particularly important for
the design of Eureka, a DSM system that implements the Lazy Data Merging consistency
model. To ensure portability we use standard Unix™ system calls (i.e. mprotect, mmap,
etc.). Our expectations are that as is the case of PVM and MP], a portable implementation
of a DSM system should contribute for disseminating their use among the scientific
community. In Chapter V we provide the indications for this path.

Eureka is a partial implementation of the LDM consistency model. Our preliminary
results corroborate the protocol correctness and possibilities to provide performance
enhacements. Quarks [CKK95] is also a portable DSM system developed at the University
of Utah, and currently provides an implementation of the Eager Release Consistency
Model. In order to accelerate the implementation of Eureka we have reused some of
Quark’s basic components. Our initial performance measurements provide results that are

comparable to the original system, but our expectations are that, when fully implemented,

109

Eureka would present superior results since it implements a more relaxed memory

consistency model.

A. SUGGESTIONS FOR FUTURE WORK

As mentioned before, Eureka partially implements the LDM protocol and the
conclusion of the implementation of synchronization primitives is needed. Further research
is also required for instrumenting the system and collecting an appropriate set of data (i.e.,
number of page faults, number of diffs for each page and average number of diffs per page,
number of synchronization accesses, start-up time, average size and number of messages,
etc.). Based on these statistics some improvements can be achieved, since we have
designed the protocol adopting a conservative approach.

Other open questions are the consideration of the price paid for implementing a
portable solution when compared to system-oriented ones and the benefits of adaptive

versus static data mapping policies.

110

[AAL92]

[ACDBY%4]

[AHO90]

[AHJ90]

[BA93]

[BR9O]

[BS93]

[BZS93]

[CBZ91]

[CBZ92]

LIST OF REFERENCES

Ananthanarayanan, R., Mustaque Ahamad and Richard J. LeBlanc.
Application Specific Coherence Control for High Performance Distributed
Shared Memory. In Proc. of the Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS - III), pages 109-128, March 1992.

Amza, Christiana, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel.
Treadmarks: Shared Memory on Networks of Workstations. Department of
Computer Science - Rice University, 1994.

Adve, Sarita V., and Mark D. Hill. Weak Order a New Definition. In IEEE
vol 8, pages 2-14, 1990.

Ahmad, Mustaque, Philip W. Hutto and Ranjit John. Implementing and
Programming Causal Distributed Shared Memory. GIT-CC-90/49, College of
Computing, Georgia Tech, October 1990.

Banerji, Arindam et all. High-Performance Distributed Shared Memory
Substrate for Workstations Clusters. Technical Report 93-1. Department of
Computer Science and Engineering University of Notre Dame.

Bisiani, Roberto & Mosus Ravishankar. Plus: A Distributed Shared-Memory
System. Computer Magazine page 115 year 1990.

Bolosky, William J. and Michael L.Scott. False Sharing and its Effect on
Shared Memory Performance. Proceedings of the Fourth Usenix Symposium
on Experiences with Distributed and Multiprocessor Systems pages 57-71,
September of 1993.

Bershad, Brian N., Mathew J. Zekauskas, and Wayne A. Sawdon. The
Midway Distributed Shared Memory System. In Proceedings of the 1993
IEEE CompCon Conference, pages 528-537, 1993.

Carter, John B., John K. Bennett and Willy Zwaenepoel. Implementation and
Performance of Munin. In Proceedings 13 ACM Symposium on Operating
Systems Principles, pages 152-164, May 1991.

Carter, John B., John K. Bennet and Willy Zwaenepoel. Techniques for
Reducing Consistency-Related Communication in Distributed Shared
Memory Systems. Computer Systems Laboratory - Rice University 1992.

111

[CKKO95]
[CS91]

[DCMPI1]

[DF92]

[FBYR&8]

[GLLG90]

[GVW89]

[HNO93]
[HS93]
[K95]

[KFJ94]

Carter John B., Dilip Khandekar, Linus Kamb. Distributed Shared Memory:
Where We Are and Where We Should Be Headed. Proceedings of Hot Topics
on Operating System Principles 1995.

Mellor-Crummey, John & Michael L. Scott. Scalable Reader-Writer

Synchronization for Shared Memory Multiprocessors. Proceedings of 3rd
PPoPP, 1991.

Dasgupta, P., R. C. Chen, S. Memon, M. P. Pearson, R. Ananthanarayanan,
U. Ramachandran, M. Ahamad, R. J. LeBlanc, W. F. Appelbe, J. M.
Bernabeu-Auban, P. W. Hutto, M. Y. A. Khalidi, C. J. Wilkenloh. The Design
and Implementation of the Clouds Distributed Operating System. Technical
Report - Georgia Institute of Technology 1991.

Delp, G. S. and Farber, D. J., Memnet -- a different approach to network’,
Technical Report, Department of Electrical Engineering, University of
Delaware 1992.

Forin, A., Joseph Barrera, Michael Young and Richard Rashid. Design,
Implementation and Performance Evaluation of a Distributed Shared
Memory Server for Mach. Technical Report CMU-CS88-165 August 1988
Computer Science Department Carnegie-Mellon University.

Gharachorloo, Kourosh, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennesey. Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors. In IEEE vol 8, pages 15-26,
1990.

Goodman,J. R., M. K. Vernon and P. J. Woest. Efficient Synchronization
Primitives for Large-Scale Cache-Coherent Multiprocessors, Proceedings
Third International Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, April 1989 pages 64-75.

Han, Jay. Porting FastThreads to the KSRI1. Technical Report INRIA -
France 1993.

Stone, Harold S., High Performance Computer Architecture third edition,
Section 6.4 page 385 - 402.

Keleher, Peter. Lazy Release Consistency for Distributed Shared Memory.
Doctoral Dissertation, Rice University, Texas. January 1995.

Koch Povl T., Robert J. Fowler, and Eric Jul. Message-Driven Consistency in
a Software Distributed Shared Memory. In 1 Symposium on Operating
Systems Design and Implementation pages 75-85, 1994.

112

[KGGK94]

[KLS8S8]

[KOHH%4]

[KNO93]

[KS93]

[LAM79]

[LJ93]

[LKBT92]

[LLIN92]

[LW93]

[ML95]

Kumar, Vipin, Ananth Grama, Anshul Gupta and George Karapys.
Introduction to Parallel Computing. Design and Analysis of Algorithms.
Pages 23-24, 1994.

Li, K. IVY: A Shared Memory Virtual System for Parallel Computing. I n
Proceedings of the 1988 International Conference on Parallel Processing,
pages I 94-101, August 1988.

Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum and John Hennessy. The
Stanford FLASH Multiprocessor. In Proceedings of the 21st International
Symposium on Computer Architecture, pages 302-313, Chicago, IL, April
1994,

Khalid, Yousef & Michael Nelson, The Spring Virtual Memory System.
Technical Report TR-93-9 Sun Microsystems Laboratories, Inc, 1993.

Karp, Alan H., and Vivek Sarkar. Data Merging for Shared Memory
Multiprocessors. Proceedings of HICSS, 1993.

Lamport, Leslie. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, C-28 -
pages 241-248, September 1979.

Lea, Rodger & Christian Jacquemot, COOL: system support for distributed
object-oriented programming. Technical Report - Chorus Systemes 1993.

Lelvet, Willem G., M. Frans Kaashoek, Henri Bal and Andrew S.
Tannembaum. A Comparison of Two Paradigms for Distributed Shared
Memory. Technical Report of Department of Mathematics and Computer
Science Vrije Universiteit, The Netherlands 1992.

Lenoski, Daniel, James Laudon, Truman Joe, David Nakahira, Luis Stevens,
Anoop Gupta and John Hennessy. The DASH Prototype: Implementation
and Performance. In Proc.of the 18th Annual Int’l on Computer Architecture
(ISCA’92) pages 92-102. May, 1992.

Lee, J. William, Concord: Re-Thinking the Division of Labor in a
Distributed Shared Memory System. Technical Report 93-12-05 Department
of Computer Science and Engineering - University of Washington 1993.

Milutinovic, Veljko et al, A Survey of Distributed Shared Memory Systems.

Proceedings of the Twenty-Eigth Annual Hawaii International Conference
on System Sciences 1995 Vol 1.

113

[MLU95]

[MS94]

[MU9%4]

[NK93]

[NL91]

[RO93]

[SZ90]

[TN95]

[WA95]

[ZB92]

[ZSB94]

Milutinovic, Veljko et al, A Survey of Software Solutions for Maintenance of
Cache Consistency in Shared Memory Multiprocessors. Proceedings of the

Twenty-Eigth Annual Hawaii International Conference on System Sciences
1995 Vol 1.

Michael, Maged and Michael Scott, Scalability of Atomic Primitives on
Distributed Shared Memory Multiprocessors. Technical Report - Computer
Science Department University of Rochester.

Mohindra, Ajay and Rachamadran, Umakishore, A Comparative Study of
Distributed Shared Memory System Design Issues. GIT-CC-94/35.

Nelson, Michael & Yousef Khalid, A Flexible Paging Interface, Technical
Report TR-93-20 Sun Microsystems Laboratories, Inc, 1993.

Nitzberg, Bill & Virginia Lo, Distributed Shared Memory: A Survey on
Issues and Algorithms, IEEE Computer, August 1991 page 52- 60.

Ramanathan Gowri and Joel Oren. Survey of Commercial Parallel Machines.
Computer Architecture News, Vol 21, No 3 - June 1993.

Stumm, Michael and Songnian Zhou. Algorithms Implementing Distributed
Shared Memory. In Computer IEEE, pages 54-64, May 1990.

Tanenbaum, Andrew S., Distributed Operating Systems, Prentice Hall 1995
pages 312 and 365 - 371.

Watson, Ian and Rawsthorne, Alasdair, Decoupled Pre-Fetching for
Distributed Shared Memory. Proceedings of the Twenty-Eigth Annual
Hawaii International Conference on System Sciences 1995 Vol 1.

Zucker, Richard and Jean-Loup Baer, A Performance Study of Memory
Consistency Models. Technical Report No. 92-01-02 Department of
Computer Science and Engineering - University of Washington 1992.

Zekauskas, Mathew J., Wayne A. Sawdon, and Bershad Brian N. Software
Write Detection for a Distributed Shared Memory. In First Symposium on
Operating Systems Design and Implementation OSDI pages 87-100, 1994.

114

INITIAL DISTRIBUTION LIST

1. Defense Techincal Information Center. oottt
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Libraryt
Code 052
Naval Postgraduate School
Monterey, CA 93943-5101

3.Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4.Dr Amr Zaky, Code CS/KA o
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr Mantak Shing, Code CS/SH
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. DrJohn Camter.ottt e
Department of Computer Science
3190 Merrill Engineering Bldg.
Salt Lake City, Utah 84112.

T.Dr Alan Karp.
HP Labs 3U-7
Hewlett-Packard Company
1501 Page Mill Road
Palo Alto, CA 94304.

8. Instituto de Pesquisas daMarinha-IPgMcovun.....

Rua Ipiru, n° 2 , Itha do Governador,
Rio de Janeiro , RJ, BRAZIL
CEP 21931 - 090.

115

9. LCdr Joao Alberto Vianna Tavares
Av. Sernambetiba 3300 Bloco VI
apto 2103 - Barra da Tijuca -

Rio de Janeiro - BRAZIL.
CEP 22630.

..

116

